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1 Introduction

We want to derive the classic result of light bending around a sufficiently massive object

from purely QFT considerations. It’s a relatively simple exercise, but it shows that

many results of general relativity necessarily follows from the mediator of gravitational

interactions being a massless spin-2 particle. This document is essentially filling in some

of the details that can be found in this paper arXiv:1704.05067.

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ℏ = 1. The reduced four dimensional Planck mass is MPl = (8πG)−1/2 ≈

2.43 × 1018GeV. We use boldface letters r to indicate 3-vectors and x and p to denote

4-vectors. Conventions for the curvature tensors, covariant and Lie derivatives are all

taken from Carroll.
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2 Light Bending

Any interaction between fields starts from the action. The set up as a massive object

with mass M whose gravitational field bends an incoming null ray from its original path.

In the original solar system test of GR, the culprit that was responsible for this was a

star. Stars don’t tend to rotate quickly which means their angular momentum tends to

be pretty small. We will thus model stars as just a scalar field ϕ. Light, of course, we

be modeled with the usual massless spin-1 vector field Aµ. The action for this setup is

given by

S =

∫
d4x

√
−g

[
2

κ2
R− 1

2
gµν∂µϕ∂νϕ− 1

2
M2ϕ2 − 1

4
gµνgλρFµλFνρ

]
, (1)

where κ2 = 32πG and

Fµν = ∂µAν − ∂νAµ. (2)

Since light bending is a fairly low energy event, we need only to work in the weak-field

limit. This means the metric can be written as

gµν = ηµν + κhµν , (3)

which brings the inverse metric and volume element to the forms

gµν = ηµν − κhµν + . . . ,
√
−g = 1 +

κ

2
h, (4)

with h ≡ ηµνhµν . Plugging this all in while only including at most one power of the

metric perturbation or equivalently one power of κ leads us with

S =

∫
d4x

(
1 +

κ

2
h
)[ 2

κ2
R(2) − 1

2
(ηµν − κhµν)∂µϕ∂νϕ− 1

2
M2ϕ2 − 1

4
(ηµν − κhµν)(ηλρ − κhλρ)FµλFνρ

]
.

(5)

After a bit of algebra, we’re left with
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S =

∫
d4x

[
2

κ2
R(2) − 1

2
(∂ϕ)2 − 1

2
M2ϕ2 +

κ

2
hµν∂µϕ∂νϕ

−1

4
(ηµνηλρFµλFνρ − κηµνhλρFµλFνρ − κηλρhµνFµλFνρ)

]
+

∫
d4x

κ

2
h

(
−1

2
(∂ϕ)2 − 1

2
M2ϕ2 − 1

4
ηµνηλρFµλFνρ

)
,

(6)

where (∂ϕ)2 ≡ ηµν∂µϕ∂νϕ. We can separate these two actions into a free action S0

S0 =

∫
d4x

[
2

κ2
R(2) − 1

2
(∂ϕ)2 − 1

2
M2ϕ2 − 1

4
F µνFµν

]
, (7)

i.e. the action that yields the equations of motion and the interaction Lagrangians.

First we symmetrize the coupling between the kinetic energy of the scalar field and the

metric perturbation

hµν∂µϕ∂νϕ =
1

2
(hµν∂µϕ∂νϕ+ hνµ∂νϕ∂µϕ) =

1

2
hµν(∂µϕ∂νϕ+ ∂νϕ∂µϕ), (8)

which gives the graviton-scalar interaction Lagrangian as being

Lhϕϕ =
κ

4
hµν

(
∂µϕ∂νϕ+ ∂νϕ∂µϕ− ηµν [(∂ϕ)

2 +M2ϕ2]
)
, (9)

and the gravity-vector interaction Lagrangian is given by

LhAA = −κ

4

(
ηµνhλρ + ηλρhµν +

1

2
hηµνηλρ

)
FµλFνρ. (10)

Now we want to derive the Feynman/vertex rules for each interaction. The easiest

way to do this is by taking a page from the path integral formalism i.e. taking repeated

derivatives and replace derivatives with momenta i.e. ∂µ → −ipµ. As the Feynman

diagram indicates, we use pi,f , ki,f for the initial/final momentum for the scalar and vector

respectively. We also have the initial momenta to be incoming and the final momenta to

be out going. Taking the first functional derivative gives

δLhϕϕ

δϕ
=

κ

4
hµν

(
2(−ipµ)∂νϕ+ 2(−ipν)∂µϕ− ηµν [2(−ipλ)∂λϕ+ 2M2ϕ]

)
. (11)

Taking one more derivative gives
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δ2Lhϕϕ

δϕ2
=

κ

2
hµν

(
pµi p

ν
f + pµfp

ν
i − ηµν [pi · pf +M2]

)
, (12)

where for outgoing momenta, we replaced the derivatives by ∂µ → ipµ. Thus, the

vertex rule for scalar-graviton interactions is

V µν(pi, pf ) =
−iκ

2

(
pµi p

ν
f + pµfp

ν
i − ηµν [pi · pf +M2]

)
. (13)

Now we do the same for the vector-graviton interaction. The only difference is that

in addition to replacing the derivatives, we must also replace the vector field Aµ with

polarization vectors i.e. Aµ → ϵµλ where λ is the polarization of the photon. Writing

FµλFνρ = ∂µAλ∂νAρ − ∂µAλ∂ρAν − ∂λAµ∂νAρ + ∂λAµ∂ρAν , (14)

the first derivative/replacement leaves us with

δLhAA

δA
= −κ

4

(
ηµνhλρ + ηλρhµν +

1

2
hηµνηλρ

)
×

× [(−ikµ
i ϵ

λ
i )(∂

νAρ) + ∂µAλ(−ikν
i ϵ

ρ
i )− (−ikµ

i ϵ
λ
i )∂

ρAν − ∂µAλ(−ikρ
i ϵ

λ
i )

− (−ikλ
i ϵ

µ
i )∂

νAρ − (−ikν
i ϵ

ρ
i )∂

λAµ + (−ikλ
i ϵ

µ
i )∂

ρAν − ∂λAµ(−ikρ
i ϵ

ν
i )],

(15)

here i represent the initial polarization of the photon i.e. ϵi ≡ ϵ(ki). Next we take the

derivative again we get

δ2LhAA

δA2
= −κ

4

(
ηµνhλρ + ηλρhµν +

1

2
hηµνηλρ

)
×

× [(−ikµ
i ϵ

λ
i )(ik

ν
f ϵ

ρ
f ) + (ikµ

f ϵ
λ
f )(−ikν

i ϵ
ρ
i )− (−ikµ

i ϵ
λ
i )(ik

ρ
fϵ

ν
f )− (ikµ

f ϵ
λ
f )(−ikρ

i ϵ
λ
i )

− (−ikλ
i ϵ

µ
i )(ik

ν
f ϵ

ρ
f )− (−ikν

i ϵ
ρ
i )(ik

λ
f ϵ

µ
f ) + (−ikλ

i ϵ
µ
i )(ik

ρ
fϵ

ν
f )− (ikλ

f ϵ
µ
f )(−ikρ

i ϵ
ν
i )],

(16)

and after some algebra results in

δ2LhAA

δA2
= −κ

2
{hµν [(ki · kf )(ϵµi ϵνf + ϵνi ϵ

µ
f ) + (ϵi · ϵf )(kµ

i k
ν
f + kν

i k
µ
f )

− (ki · ϵf )(ϵµi kν
f + ϵνi k

µ
f )− (ϵi · kf )(kµ

i ϵ
ν
f + kν

i ϵ
µ
f )]

− h[(ki · kf )(ϵi · ϵf )− (ki · ϵf )(kf · ϵi)]}.

(17)
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Now this result is fine, but its not particularly helpful as a vertex rule. We would

like to know what the graviton-vector vertex rule is so it’ll be easier in the future to take

inner products of the various components. Let’s try to factor out the metric perturbation

and polarization vectors ϵλi , ϵ
ρ
f from the above expression. Since hµν is the easier of the

two, we can start from that

δ2LhAA

δA2
=− κ

2
hµν{[(ki · kf )(ϵµi ϵνf + ϵνi ϵ

µ
f ) + (ϵi · ϵf )(kµ

i k
ν
f + kν

i k
µ
f )

− (ki · ϵf )(ϵµi kν
f + ϵνi k

µ
f )− (ϵi · kf )(kµ

i ϵ
ν
f + kν

i ϵ
µ
f )]

− ηµν [(ki · kf )(ϵi · ϵf )− (ki · ϵf )(kf · ϵi)]},

(18)

which leads us to rearrange the terms to get

δ2LhAA

δA2
=− κ

2
hµν [(ki · kf )[ϵµi ϵνf + ϵνi ϵ

µ
f − ηµν(ϵi · ϵf )] + (ϵi · ϵf )(kµ

i k
ν
f + kν

i f
µ
f )

+ ηµν(ki · ϵf )(kf · ϵi)− (ki · ϵf )(ϵµi kν
f + ϵνi k

µ
f )− (ϵi · kf )(kµ

i ϵ
ν
f + kν

i ϵ
µ
f )].

(19)

This can be further expressed by writing ϵi · ϵf = ηλρϵ
λ
i ϵ

ρ
f as well as ϵµi = ηµλϵ

λ
i and

ki · ϵf = ηαρk
α
i ϵ

ρ
f to get

δ2LhAA

δA2
=− κ

2
hµν [ki · kf (ηµλϵ

λ
i η

ν
ρη

ρ
f + ηνλϵ

λ
i η

µ
ρη

ρ
f − ηµνηλρϵ

λ
i ϵ

ρ
f ) + (kµ

i k
ν
f + kν

i f
µ
f )ηλρϵ

λ
i ϵ

ρ
f

− ηαρk
α
i ϵ

ρ
f (η

µ
λϵ

λ
i k

ν
f + ηνλϵ

λ
i k

µ
f )− ηαλϵ

λ
i k

α
f (k

µ
i η

ν
ρϵ

ρ
f + kν

i η
µ
ρ ϵ

ρ
f ) + ηµνηαρk

α
i ϵ

ρ
fηβλk

β
f ϵ

λ
i ].

(20)

This empowers us to write

δ2LhAA

δA2
=− κ

2
hµνϵ

λ
i ϵ

ρ
f [ki · kf (η

µ
λη

ν
ρ + ηµρη

ν
λ − ηµνηλρ) + ηλρ(k

µ
i k

ν
f + kν

i k
µ
f )− ηαρ(η

µ
λk

ν
f + ηνλk

µ
f )

+ ηµνηαρηβλk
α
i k

β
f − ηαλ(k

µ
i η

ν
ρ + kν

i η
µ
ρ )]

=− κ

2
hµνϵ

λ
i ϵ

ρ
f [ki · kf (η

µ
λη

ν
ρ + ηµρη

ν
λ − ηµνηλρ) + ηλρ(k

µ
i k

ν
f + kν

i k
µ
f )

− ki,ρ(η
µ
λk

ν
f + ηνλk

µ
f ) + ηµνki,ρkf,λ − kf,λ(k

µ
i η

ν
ρ + kν

i η
µ
ρ )].

(21)

Thus we can now read off what the vertex rule is

V µνλρ(ki, kf ) =
iκ

2
[ki · kf (ηµληνρ − ηµνηλρ) + ηµνkρ

i k
λ
f + ηλρ(kµ

i k
ν
f + kν

i k
µ
f )

− (ηµλkρ
i k

ν
f + ηµρkν

i k
λ
f + ηνλkρ

i k
µ
f + ηνρkµ

i k
λ
f )].

(22)
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Our last main ingredient as the propagator for a massless spin-2 particle. The prop-

agator is given by

Pµναβ(q) =
1

2q2
(ηµαηνβ + ηµβηνα − ηµνηαβ). (23)

We are finally in a position to calculate the total amplitude. There are two contribu-

tions: one from the diagram we listed above and the other where we cross the legs from

the photons. Thus our amplitudes are

iMI = V µν(pi, pf )Pµναβ(q)V
αβ

λρ (ki, kf )ϵ
λ
i (ki)ϵ

ρ
f (kf ), (24)

and

iMII = V µν(pi, pf )Pµναβ(q)V
αβ

λρ (ki, kf )ϵ
λ
i (kf )ϵ

ρ
f (ki). (25)

Now we want to make a few approximations. First, we’re working in the static limit

so therefore

(pi)µ ≈ (pf )µ ≈ Mηµ0 = (−M, 0, 0, 0), (26)

which means the massive object/star’s momentum is almost completely unaltered by

the scattering light. We also label

ki ≡ (ωi,ki), kf ≡ (ωf ,kf ). (27)

We also assume that the energy/momentum transfer will be very small as well i.e.

(ki−kf )
2 = −2ki·kf = −2[−ωiωf+ki·kf ] = 2ωiωf (1−cos θ) = 4ωiωf sin

2

(
θ

2

)
≈ 4ω2 sin2

(
θ

2

)
,

(28)

where we used the fact that k2
i = k2

f = 0 and thus ki,f = ωk̂i,f with the energy of the

photon is basically unchanged1 as well so ωi ≈ ωf . Noting pi · pf = −M2, we have

V µν(pi, pf ) =
−iκ

2
(pµi p

ν
f + pνi p

µ
f − ηµν(pi · pf +M2)) ≈ −iκM2ηµ0 η

ν
0 , (29)

1This follows from the static approximation of the star that we’re using.
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which when contracted with the graviton-propagator yields

V µν(pi, pf )Pµναβ(q) = −iκM2P00αβ =
−iκM2

2q2
(2ηα0ηβ0 + ηαβ). (30)

Now let’s contract the above tensor with the graviton-vector vertex rule

V µνPµναβV
αβλρ =

−iκM2

2q2
(2ηα0ηβ0 + ηαβ)

iκ

2
[ki · kf (ηαληβρ − ηαβηλρ) + ηαβkρ

i k
λ
f

+ ηλρ(kα
i k

β
f + kβ

i k
α
f )− (ηαλkρ

i k
β
f + ηαρkβ

i k
λ
f + ηβλkρ

i k
α
f + ηβρkα

i k
λ
f )]

=
κ2M2

4q2
[4ki · kfηλ0η

ρ
0 + 2ki · kfηλρ − 2kρ

i k
λ
f + 4ki,0kf,0η

λρ

− 2ηλ0k
ρ
i kf,0 − 2ηρ0ki,0k

λ
f − 2ηλ0k

ρ
i kf,0 − 2ηρ0ki,0k

λ
f ].

(31)

Using the condition that for a massless vector, ϵµ = (0, ϵ̂), contracting the above term

with the polarization vector gives

V µνPµναβV
αβ

λρ ϵ
λ
i ϵ

ρ
f =

κ2M2

4q2
[
2ki · kf (ϵi · ϵf )− 2(ϵi · kf )(ϵf · ki) + 4ω2(ϵi · ϵf )

]
. (32)

Lastly, we’ll assume that the deviation in the angle between the incoming and outgoing

photon will be small and thus2 ki ·kf ≈ ki ·ϵf ≈ ϵi ·kf ≈ 0. Recognizing that conservation

of energy/momentum at the vertices means q2 = (ki − kf )
2, leaves us with the following

amplitude

iMI ≈ κ2M2

4(4ω2 sin2
(
θ
2

)
)
(4ω2ϵi · ϵf ) =

κ2M2

4 sin2
(
θ
2

)ϵ+(ki) · ϵ−(kf ), (33)

where we use “+” and “-” to denote the different polarizations of the photon. The

second amplitude will be virtually identical to the first one, all we need to do is swap the

polarizations/momenta of the vectors

iMII ≈ κ2M2

4 sin2
(
θ
2

)ϵ−(ki) · ϵ+(kf ). (34)

2The condition ki · ϵf ≈ 0 comes from the approximation that since the initial and final direction of
the photon doesn’t change very much, the propagating direction of the final photon will be pretty close
to the initial photon and thus the direction of the initial photon momentum will be pretty close to being
transverse to the direction of the outgoing photon. Then its just a matter of ki · ϵf ≈ ki · ϵi = 0 and
likewise if we were to swap the i and f indices.
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We are ultimately interested in calculating the cross section in the center of mass

frame which is given by

dσ

dΩ
=

1

(8π)2s
|M|2, (35)

where s = −(pi + ki)
2 is the Mandelstam variable which gives the total energy in the

center of mass frame. In our case, this can be expressed as

s = −(pi + ki)
2 = −p2i − 2pi · ki = M2 − 2Mω ≈ M2, (36)

since we’re taking the energy of the photon to be small too. For a photon that initially

propagates in the z-direction, a common choice for the polarization vectors are given by

ϵ±(k) =
1√
2
(0,∓1,−i, 0), (37)

and therefore the dot product yields

ϵ+(ki) · ϵ−(kf ) = ϵ−(ki) · ϵ+(kf ) =
1

2
(−1− 1) = −1. (38)

Averaging over initial and summing over final photon polarizations then gives us

1

2

∑
h=±

|ϵh(ki) · ϵ−h(kf )|2 =
1

2
(|−1|2 + |−1|2) = 1. (39)

Thus, the differential cross section can be simply written as

dσ

dΩ
=

1

2(8π)2s

∣∣∣∣∣ κ2M2

4 sin2
(
θ
2

)∣∣∣∣∣
2 ∑
h=±

|ϵh(ki) · ϵ−h(kf )|2. (40)

Using the small-angle approximation of sin
(
θ
2

)
≈ θ/2, the differential cross section

becomes

dσ

dΩ
≈ 1

2 · 64π2M2
× (32πG)2M4

16(θ/2)4
× 2 =

16G2M2

θ4
. (41)

We’re almost done! We have the differential cross section in terms of the angle and

mass. The light-bending result is given in terms of the impact parameter. The cross

section can be expressed in terms of the impact parameter by
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σ = πb2, (42)

where we assume that the scattering is taking place within a disk of radius b. This

implies

dσ =
dσ

dΩ
dΩ = 2πb db. (43)

Recall that the solid angle measure is

dΩ = 2π sin θ dθ. (44)

This implies that the differential cross section is related to the impact parameter by

taking the ratio of the above two equations

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣, (45)

the absolute value sign is put in by hand to ensure the result is positive. Equating

the expression we found for the differential cross section gives us

b db = −16G2M2

θ4
sin θ dθ ≈ −16G2M2

θ3
dθ, (46)

the minus sign is put in because the impact parameter is decreasing and so therefore

its derivative is negative. Integrating both sides gives

b2

2
≈ 8G2M2

θ2
, (47)

where we’ve ignored constants of integration. Solving for the deflection angle gives

θ =
4GM

b
, (48)

which is the famous light bending result of gravitational lensing!
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