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We want to vary the action with respect to the inverse metric in order to derive
Einstein’s (covariant) equations. This document will serve as a hub for looking up how
to derive the equations of motion for various modified gravity theories. First we start

with the classical Einstein-Hilbert action.

1 Einstein-Hilbert Equations of Motion

The Lagrangian takes the form

L= V4R, (1)

where g = det(g,,) is the determinate of the metric tensor and R is the Ricci scalar.

Under the action, we get the expression

S:/ﬁ%c, (2)

where we integrate over 4-dimensional spacetime. If one wishes to consider matter
within the theory, all that is needed is the addition of the matter Lagrangian L,,. The

action becomes

S = /d% L+ L], (3)

From classical mechanics (CM), we are reminded that if one were interested in deriv-

ing the equations of motion for the physical system, we must vary with respect to the
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dynamical variable. In the case of CM, we varied with respect to time. Here though,
since we're treating all of the spacetime coordinates as the same, that won’t be sufficient.
In GR, it is much more common to vary with respect to the inverse metric instead. First

we write the above expression as
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S d*z [v/=9gR(gw) + Lin]. (4)

where 2x% = 167G is the Planck mass and G is Newton’s constant. We will soon vary
with respect to the inverse metric. But first we recognize that R = ¢g"”R,,. So we then

have

S= 1 [ dhe [V Ruw + L] (5)
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Now we shall vary the action with respect to the inverse metric

1
58 = 5.3 d'z [(Ruwbg™ + 6" 6R,u)v/—g + R6\/—g] + 65 (6)

and S, is the action for matter. First we want to deal with the variation in the

volume. Recall we can treat the variation operator as a differential operator. We get
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\/—_—9597 (7)

V5=

where d¢g is the variation in the determinant. To figure out what this is, we want to

look at how the determinant is defined

g=> (1) M"™g,, (8)

nv

where M* is the determinant of the determinant whose u-row and rv—column has

been deleted. Thus, the variant in the determinant is simply

6g = (=" M*ég,,. 9)

Next, we write the co-factor matrix in terms of the inverse metric and the determinant



1
g = —(=1r M, (10)
g

and so the variant in the determinant becomes
09 = 99" 09 (11)

Recall we wish to vary the action with respect to the inverse metric. To get the above

expression in those terms, we use the fact that

9" ga = 08 = ga, 09" + " dgx, = 0. (12)

The last expression implies that the variation in either the metric or inverse metric

can be written as

8Guw = —Gungup09™, 6 = —gM'g" 8 g, (13)

So the variation in the volume form is merely

1
5\/ = = _5\/ _gg,ul/églw' (14)

\/—( 99,,09")

Now we are interested in figuring out the variation in the curvature tensor. To figure

out what 0, is, we will first look at the Riemann tensor and its variation

R\, = 0,0, — 0,1, + T8, I% — ¥

pno vA

Apv vo i/\ (15)

The variation in the Riemann tensor is then
OR’,,, = 0u(0T7) — 0,(1%,) + (615 L0y + T0,(615y) — (619, )Ty — 17, (617%,). (16)
Next we notice that

Vﬂ(érllj)\) = 8#(5Fz/i/\) + FZOC((;FS)\) - Fgu(érg/\) - (;N(CSFZV) (17)

We can also calculate



VL (0Th) = (i ) (18)

Taking the difference between the above two objects gives

Vu(0T75) = Vi (0T,) = 8,(0T7,5) — 0,(617,) + (T )0 + 10 (6175) — (617, — T0, (017,
(19)

= 0R’ (20)

v

Next we can find the variation in the Ricci tensor by taking the trace of the variation

of the Riemann tensor

SRy = 6RY,,, = VA(T5,) — V,(6T3,). (21)

Contracting this variation with the metric gives

9" 0R,, = V5 [g" T, — g oIl ], (22)

and is a total derivative term which we can normally throw out. The issue becomes
when we have a term e.g. a scalar field that couples to the Ricci scalar. Now we find 6.5

takes the form

1

K2

1
0S = /d4:c (\/—ng,ég‘“’ - \/—gﬁRguyég“”) + 0Sm (23)

Recall that the functional derivative of the action satisfies

68 = / A"z Z (%w), (24)

where ®° is a complete set of fields being varied. This brings the total action §S to
be

1 0S 1 1 1 0Su
—_95ng = ? (RMV — §Rguy> + —,_—g §g/“/ = O (25)

Defining the energy momentum tensor to be



1 oSy
T, = ——— M 2
K /_g(sg;u/ ( 6)

and lastly moving it to the other side we get

1
R, — §Rgm, = 8nG1T),,. (27)

2  f(R) Gravity

Here we would like to derive the equations of motion for f(R) gravity. In the interest of

simplicity, we present the action as

S = dzv/~gf(R), (28)
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where of course f(R) is some general function of the curvature scalar. Again we wish

to vary the action with respect to to inverse metric g*”. Proceeding accordingly shows

35 = 5 [t lV=aI(R) + F(RIVa] = 515 [[ate [ Vo e aR — (R aie” |

(29)

f being some general scalar function of the curvature means the functional derivative

should reduce down to just the normal derivative

of _df _

SR dR (B). (30)

Next we need only to worry about varying the curvature scalar now

S= 2_,12 / Az [v/=gf' (R)(R,,09" + g"0R,,) — %\/—_gf (R)guwdg™]. (31)

We’ve already dealt with the variation in the Ricci tensor, but only to a certain extent.
Since it was already a total derivative term, we could safely ignore it. Now however, we
have a coupling between our arbitrary function and the curvature tensor which will yield

non-trivial dynamics. Recall that the variation in the Ricci tensor is given by

g oR,, =V [g’“’él“fw — g“’\éfzy}. (32)



Now we need to find out what the variation in the connection is. First we write

1
Lo = 5((9#9147 + 0 Gup — OpGuw ), (33)

where we can write

F;);u = g)\prp;w- (34)

The variation in the connection can then be shown to be

6T, = 69Ty + 90T v (35)
= —gakgﬁpégagI‘pm, + %g”’(@uégup + 0,09,p — 0,09,) (36)
= —gMT%,095, + %g”(%égy,} + 04690 — 040G ) (37)
_ %gkﬂ(ayagyp + 0,00, — DOgu — 202,505,). (38)

Next we introduce the terms :I:Ffmégg,, and :I:Ffpéggu to the top to get

1
5F21/ = §9Ap(au591/p - Fﬁudgﬁp - Fﬁpégﬁv + 0y0gup — Ffudgﬁp - ngfsgﬁu — 0p0guw + Fg;ﬁgﬁu + Fﬁﬁgﬁu)

(39)
1
- §gkp(v#591/p + V69 — Vp0guw)- (40)
This result implies we can write the variation in the Ricci tensor as
1
g oR,, = E(gwg)\p - g“)\gyp>vA(vu59Vp + V090 — Vp0gum). (41)
Plugging this into the action and integrating by parts gives us
1 1
05 = 952 / d'z [v —g(f’(R)Rw,égW - §(guyg)\p - gMAgVP)[V/\f’(R)](V#(Sng + Vi09up = V0guw))
1
= 5V=9f(R)9u0g"].
(42)

We can integrate by parts again and manipulate the indices to get

1
2k2

3 = g [ @4V |1 () Ry~ 9,5 () + OF (R~ 3 (0|3 (13



Lastly, we can set the integral to zero and divide through by the variation and the

volume element to get

1 05

/ / / 1 —
Nertrintl (B) Ry = (Vu Vo f'(R) = Of (R)gu) = 5 f(R)gu = 0. (44)

We can check if our answer is correct by setting f(R) = R and we see that

1
f'(R)=1= R, — §Rgm, =0, (45)

is the original Einstein equations in a vacuum. The equations of motion offer them-

selves a constraint on what the scalar curvature has to be by simply taking the trace

_2f(R) 30f'(R)
f®R) @)

R (46)

We can eliminate the covariant derivatives acting on the scalaron by making judicious

use of the chain rule to get

1
_ifg;w + fRRul/ - fRR [v,uvuR - V2Rg,u1/} - fRRR [V,uRvuR - (VR)ZQ,LLV] = 07 (47)

where

2
fREﬂ fRRES—Ré,

dR’ (48)

and (VR)* = ¢V, ,RV,R and V* = ¢V, V,,.



