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We want to vary the action with respect to the inverse metric in order to derive

Einstein’s (covariant) equations. This document will serve as a hub for looking up how

to derive the equations of motion for various modified gravity theories. First we start

with the classical Einstein-Hilbert action.

1 Einstein-Hilbert Equations of Motion

The Lagrangian takes the form

L =
√
−gR, (1)

where g = det(gµν) is the determinate of the metric tensor and R is the Ricci scalar.

Under the action, we get the expression

S =

∫
d4xL, (2)

where we integrate over 4-dimensional spacetime. If one wishes to consider matter

within the theory, all that is needed is the addition of the matter Lagrangian Lm. The

action becomes

S =

∫
d4x [L+ Lm]. (3)

From classical mechanics (CM), we are reminded that if one were interested in deriv-

ing the equations of motion for the physical system, we must vary with respect to the
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dynamical variable. In the case of CM, we varied with respect to time. Here though,

since we’re treating all of the spacetime coordinates as the same, that won’t be sufficient.

In GR, it is much more common to vary with respect to the inverse metric instead. First

we write the above expression as

S =
1

2κ2

∫
d4x

[√
−gR(gµν) + Lm

]
. (4)

where 2κ2 = 16πG is the Planck mass and G is Newton’s constant. We will soon vary

with respect to the inverse metric. But first we recognize that R = gµνRµν . So we then

have

S =
1

2κ2

∫
d4x

[√
−g(gµνRµν + Lm)

]
. (5)

Now we shall vary the action with respect to the inverse metric

δS =
1

2κ2

∫
d4x

[
(Rµνδg

µν + gµνδRµν)
√
−g +Rδ

√
−g
]

+ δSm (6)

and Sm is the action for matter. First we want to deal with the variation in the

volume. Recall we can treat the variation operator as a differential operator. We get

δ
√
−g = −1

2

1√
−g

δg, (7)

where δg is the variation in the determinant. To figure out what this is, we want to

look at how the determinant is defined

g =
∑
µν

(−1)µ+νMµνgµν , (8)

where Mµν is the determinant of the determinant whose µ-row and ν−column has

been deleted. Thus, the variant in the determinant is simply

δg = (−1)µ+νMµνδgµν . (9)

Next, we write the co-factor matrix in terms of the inverse metric and the determinant
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gµν =
1

g
(−1)µ+νMµν , (10)

and so the variant in the determinant becomes

δg = ggµνδgµν . (11)

Recall we wish to vary the action with respect to the inverse metric. To get the above

expression in those terms, we use the fact that

gµλgλν = δµν ⇒ gλνδg
µλ + gµλδgλν = 0. (12)

The last expression implies that the variation in either the metric or inverse metric

can be written as

δgµν = −gµλgνρδgλρ, δgλρ = −gλµgρνδgµν . (13)

So the variation in the volume form is merely

δ
√
−g = − 1

2
√
−g

(−ggµνδgµν) = −1

2

√
−ggµνδgµν . (14)

Now we are interested in figuring out the variation in the curvature tensor. To figure

out what δRµν is, we will first look at the Riemann tensor and its variation

Rρ
λµν = ∂µΓρνλ − ∂νΓ

ρ
µλ + ΓρµαΓανλ − ΓρναΓαµλ. (15)

The variation in the Riemann tensor is then

δRρ
λµν = ∂µ(δΓρνλ)− ∂ν(δΓ

ρ
µλ) + (δΓρµα)Γανλ + Γρµα(δΓανλ)− (δΓρνα)Γαµλ − Γρνα(δΓαµλ). (16)

Next we notice that

∇µ(δΓρνλ) = ∂µ(δΓρνλ) + Γρµα(δΓανλ)− Γανµ(δΓραλ)− Γαλµ(δΓραν). (17)

We can also calculate
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∇ν(δΓ
ρ
µλ) = (µ↔ ν) (18)

Taking the difference between the above two objects gives

∇µ(δΓρνλ)−∇ν(δΓ
ρ
µλ) = ∂µ(δΓρνλ)− ∂ν(δΓ

ρ
µλ) + (δΓρµα)Γανλ + Γρµα(δΓανλ)− (δΓρνα)Γαµλ − Γρνα(δΓαµλ)

(19)

= δRρ
λµν . (20)

Next we can find the variation in the Ricci tensor by taking the trace of the variation

of the Riemann tensor

δRµν = δRλ
µλν = ∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ). (21)

Contracting this variation with the metric gives

gµνδRµν = ∇λ

[
gµνδΓλµν − gµλδΓνµν

]
, (22)

and is a total derivative term which we can normally throw out. The issue becomes

when we have a term e.g. a scalar field that couples to the Ricci scalar. Now we find δS

takes the form

δS =
1

κ2

∫
d4x

(√
−gRµνδg

µν −
√
−g1

2
Rgµνδg

µν

)
+ δSm (23)

Recall that the functional derivative of the action satisfies

δS =

∫
dnx

∑
i

(
δS

δΦi
δΦi

)
, (24)

where Φi is a complete set of fields being varied. This brings the total action δS to

be

1√
−g

δS

δgµν
=

1

κ2

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0. (25)

Defining the energy momentum tensor to be
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Tµν = − 1√
−g

δSM
δgµν

, (26)

and lastly moving it to the other side we get

Rµν −
1

2
Rgµν = 8πGTµν . (27)

2 f (R) Gravity

Here we would like to derive the equations of motion for f(R) gravity. In the interest of

simplicity, we present the action as

S =
1

2κ2

∫
d4x
√
−gf(R), (28)

where of course f(R) is some general function of the curvature scalar. Again we wish

to vary the action with respect to to inverse metric gµν . Proceeding accordingly shows

δS =
1

2κ2

∫
d4x [
√
−gδf(R) + f(R)δ

√
−g] =

1

2κ2

∫
d4x

[√
−g δf(R)

δR
δR− 1

2
f(R)

√
−ggµνδgµν

]
.

(29)

f being some general scalar function of the curvature means the functional derivative

should reduce down to just the normal derivative

δf

δR
=

df

dR
≡ f ′(R). (30)

Next we need only to worry about varying the curvature scalar now

δS =
1

2κ2

∫
d4x [
√
−gf ′(R)(Rµνδg

µν + gµνδRµν)−
1

2

√
−gf(R)gµνδg

µν ]. (31)

We’ve already dealt with the variation in the Ricci tensor, but only to a certain extent.

Since it was already a total derivative term, we could safely ignore it. Now however, we

have a coupling between our arbitrary function and the curvature tensor which will yield

non-trivial dynamics. Recall that the variation in the Ricci tensor is given by

gµνδRµν = ∇λ

[
gµνδΓλµν − gµλδΓνµν

]
. (32)
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Now we need to find out what the variation in the connection is. First we write

Γρµν =
1

2
(∂µgνρ + ∂νgµρ − ∂ρgµν), (33)

where we can write

Γλµν = gλρΓρµν . (34)

The variation in the connection can then be shown to be

δΓλµν = δgλρΓρµν + gλρδΓρµν (35)

= −gαλgβρδgαβΓρµν +
1

2
gλρ(∂µδgνρ + ∂νδgµρ − ∂ρδgµν) (36)

= −gλρΓβµνδgβρ +
1

2
gλρ(∂µδgνρ + ∂νδgµρ − ∂ρδgµν) (37)

=
1

2
gλρ(∂µδgνρ + ∂νδgµρ − ∂ρδgµν − 2Γβµνδgβρ). (38)

Next we introduce the terms ±Γβµρδgβν and ±Γβνρδgβµ to the top to get

δΓλµν =
1

2
gλρ(∂µδgνρ − Γβµνδgβρ − Γβµρδgβν + ∂νδgµρ − Γβνµδgβρ − Γβνρδgβµ − ∂ρδgµν + Γβρµδgβν + Γβρνδgβµ)

(39)

=
1

2
gλρ(∇µδgνρ +∇νδgµρ −∇ρδgµν). (40)

This result implies we can write the variation in the Ricci tensor as

gµνδRµν =
1

2
(gµνgλρ − gµλgνρ)∇λ(∇µδgνρ +∇νδgµρ −∇ρδgµν). (41)

Plugging this into the action and integrating by parts gives us

δS =
1

2κ2

∫
d4x [
√
−g(f ′(R)Rµνδg

µν − 1

2
(gµνgλρ − gµλgνρ)[∇λf

′(R)](∇µδgνρ +∇νδgµρ −∇ρδgµν))

− 1

2

√
−gf(R)gµνδg

µν ].

(42)

We can integrate by parts again and manipulate the indices to get

δS =
1

2κ2

∫
d4x
√
−g
[
f ′(R)Rµν −∇µ∇νf

′(R) + �f ′(R)gµν −
1

2
f(R)gµν

]
δgµν . (43)
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Lastly, we can set the integral to zero and divide through by the variation and the

volume element to get

1√
−g

δS

δgµν
= f ′(R)Rµν − (∇µ∇νf

′(R)−�f ′(R)gµν)−
1

2
f(R)gµν = 0. (44)

We can check if our answer is correct by setting f(R) = R and we see that

f ′(R) = 1⇒ Rµν −
1

2
Rgµν = 0, (45)

is the original Einstein equations in a vacuum. The equations of motion offer them-

selves a constraint on what the scalar curvature has to be by simply taking the trace

R =
2f(R)

f ′(R)
− 3�f ′(R)

f ′(R)
(46)

We can eliminate the covariant derivatives acting on the scalaron by making judicious

use of the chain rule to get

−1

2
fgµν + fRRµν − fRR

[
∇µ∇νR−∇2Rgµν

]
− fRRR

[
∇µR∇νR− (∇R)2gµν

]
= 0, (47)

where

fR ≡
df

dR
, fRR ≡

d2f

dR2
, . . . (48)

and (∇R)2 ≡ gµν∇µR∇νR and ∇2 ≡ gµν∇µ∇ν .
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