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Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and units

where c = ℏ = 1. The reduced 4D Planck mass is MP = (8πG)−1/2 ≈ 2.43 × 1018GeV.

The d’Alembert and Laplace operators are defined to be □ ≡ ∂µ∂
µ = −∂2

t + ∇2 and

∇2 = ∂i∂
i respectively. We use boldface letters r to indicate 3-vectors and x and p to

denote 4-vectors. Conventions for the curvature tensors, covariant and Lie derivatives

are all taken from Carroll.

We start off with the Lagrangian for linearized General Relativity with a source term

L = ∂λhµν∂
µhλν +

1

2
∂µh∂

µh− 1

2
∂λhµν∂

λhµν − ∂µh
µν∂νh+

1

MP

hµνT
µν , (1)

where the stress-energy tensor is subject to the constraint that ∂µTµν = 0. Since we’ve

already handled the hard part, lets skip straight to the gauge invariant action where we’ve

taken the metric perturbation and expressed it into its irreducible representations via the

following decompositions:

h00 = h00 = 2Φ, (2)

h0i = −h0
i = wi, (3)

h = hµ
µ = ηµνhµν = −2Φ + h̄, (4)
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hij = hTT
ij + ∂iv

T
j + ∂jv

T
i + 2

(
∂i∂jΨ− 1

3
∇2Ψδij

)
+

1

3
h̄δij, (5)

wi = wT
i + ∂iΩ, (6)

∂ihTT
ij = 0, δijhTT

ij = ∂ivTi = ∂iwT
i = 0, (7)

where h̄ = Tr[hij] and δij is the identity matrix. Defining the gauge-invariant fields

J ≡ Φ − Ω̇ + Ψ̈, L ≡ 1
3
(h̄ − 2∇2Ψ), and Mi ≡ wT

i − v̇Ti , the tensor, vector, and scalar

actions ST , SV and SS take on the forms

ST =

∫
1

2
hij
TT□hTT

ij d4x , (8)

SV =
1

2

∫
(∂iMj)

2 d4x , (9)

SS =

∫
[Φ− Ω̇ + Ψ̈]∇2L− L∇2L+ 2LL̈+ 2ΦT00(x) d

4x . (10)

Taking the source of gravitational interaction to be two static point particles separated

by a distance r, we can write T00 as

T00(x; r) = ρ(x) = Mδ3(x) +mδ3(x− r), (11)

where M and m are the masses of two point particles. Doing all the decompositions

from above gives us the following actions

ST =
1

2

∫
hij
TT□hTT

ij d4x , (12)

SV =
1

2

∫
(∂iMj)

2 d4x , (13)

SS =

∫
4J∇2L− L∇2L+ 2LL̈+

2

MP

Φρ d4x . (14)

Looking at the vector action we can see that no time derivatives of Mi are present

in the action. Therefore it is an auxiliary field and we may use its equations of motion
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(EOM) to eliminate it. Proceeding accordingly we find

δLV

δM i
= ∇2Mi = 0 ⇒ Mi = 0, (15)

which implies that SV = 0. Let’s turn our attention to SS. Recognizing that Φ =

J + Ω̇− Ψ̈, SS becomes

SS =

∫
4J∇2L− L∇2L+ 2LL̈+

2

MP

Jρ+
2

MP

Ω̇ρ− 2

MP

Ψ̈ρ d4x . (16)

Next we notice that J is a Lagrange multiplier and therefore its equations of motion

sets the other fields equal to zero. Varying w.r.t J gives us

δLS

δJ
= 4∇2L+

2

MP

ρ = 0 ⇒ L = − 1

2MP

1

∇2
ρ, (17)

where we define the action of the inverse differential operator (∇2)−1 via its Fourier

Transform

1

∇2
f(x) ≡ −

∫
d3p eip·x

1

p2
f̃(p), (18)

where f̃(p) is the Fourier Transform of f(x). Plugging the equations of motion for J

into the action gives us

SS =

∫
− 1

4M2
P

ρ
1

∇2
ρ d4x , (19)

where we’ve integrated the last two terms out of the action. We notice that the term

present in this Lagrangian is precisely the gravitational potential energy. To get the force

law, we start with

UG =

∫
− 1

4M2
P

ρ
1

∇2
ρ d3x = − 1

(2π)3
1

4M2
P

∫ ∫
ρ(x)

eip·x

−p2
ρ̃(p) d3p d3x (20)

Next we note we can express the Fourier Transform of the mass density ρ̃(p) as

ρ̃(p) =

∫
e−ip·xρ(x) d3x , (21)

which causes the gravitational potential energy to become
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UG =
1

(2π)3

∫ ∫ ∫
eip·(x−x′)

−p2
ρ(x)ρ(x′) d3p d3x′ d3x . (22)

Using the formula∫
ddp eip·(x−x′) 1

|p|n
=

(2π)d

2nπ
d
2

Γ
(
d−n
2

)
Γ
(
n
2

) 1

|x− x′|d−n
, (23)

the expression for the gravitational energy is

UG = − 1

4π

1

4M2
P

∫ ∫
ρ(x)ρ(x′)

|x− x′|
d3x′ d3x . (24)

Next we plug in the mass density for ρ into the integral

UG = − 1

4π

1

4M2
P

∫ ∫
(Mδ3(x) +mδ3(x− r))(Mδ(x′) +mδ3(x′ − r))

|x− x′|
d3x′ d3x . (25)

Since we wish to know what the force law is, we can ignore the terms that are for the

gravitational energy that a particle gains from interacting with itself. With that in mind,

the expression that we’re working with reduces down to the following

UG = − 1

2π

1

4M2
P

∫ ∫
(Mmδ3(x)δ3(x′ − r))

|x− x′|
d3x′ d3x . (26)

Integrating over the delta functions and differentiating the gravitational potential

energy gives us

F = −GMmr̂

r2
, (27)

where r is the distance between the two point masses. This is precisely the Newtonian

force law! Gaze upon its beauty!!
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