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Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = 1. The d’Alembert and Laplace operators are defined to be □ ≡ ∂µ∂
µ =

−∂2
t +∇2 and ∇2 = ∂i∂

i respectively. We use boldface letters r to indicate 3-vectors and

x and p to denote 4-vectors. Conventions for the curvature tensors, covariant and Lie

derivatives are all taken from Carroll.

1 Degrees of Freedom Overview

We are interested in the degrees of freedom for a given Lagrangian because in field theory,

degrees of freedom correspond to a particle i.e. the force carrier for the field. A degree

of freedom, broadly speaking, is an independent function (in our case) of spacetime

coordinates. First we consider a scalar field f : R4 → R usually denoted as f(t, r). We

say that f only carries one degree of freedom because the only independent function it

carries is itself. Next we have a 4-vector field V : R4 → R4 denoted by

Vµ = (V0, Vi). (1)

Since V0 is a scalar field, it carries a single degree of freedom like f . However the

3-vector field Vi is different because it is an array of three scalar fields and thus it car-
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ries three degrees of freedom. We can further decompose this vector field by using the

following theorem from linear algebra:

Theorem 1.1 Let X, Y, Z be vector spaces, and T:X → Y, U:Y → Z be linear. If UT:X

→ Z is invertible, then Y = ker(U)⊕ Im(T ).

Taking Y to be the space of all vector fields V , we can decompose it into two subspaces:

the kernel of the divergence operator i.e. ∂iV
i = 0 and the image of the gradient operator

i.e. ∂iυ. Thus, any function1 in V can be represented as

Vi = V T
i + ∂iυ. (2)

Since υ is a scalar function, it propagates only a single degree of freedom. Naively,

since V T
i is a 3 component object, we would say it has 3 degrees of freedom. However,

since we can ”solve” for one of the components (and provided the fields go to zero at

infinity) we can see that

∂xV
T
x + ∂yV

T
y + ∂zV

T
z = 0 (3)

⇒ V T
z (x, y, z) = −

∫ z

−∞
∂xV

T
x (x, y, z′) + ∂yV

T
y (x, y, z′)dz′. (4)

Therefore given some initial data, V T
z is completely determined by the components

V T
x and V T

y which implies that V T
i has only two independent functions i.e. two degrees

of freedom.

Lastly, we move on to discussing tensors. A tensor Tij is an object that maps elements

of a vector space to a basis. Generically, a 3x3 tensor has 9 components. However for this

discussion, the tensors we will most be interested in are symmetric i.e. Tij = Tji. The

decomposition for a (spatial) tensor is slightly different than that of a vector. Symmetric

tensors can be split into the image of the map taking functions to their traces, T → 1
3
Tδij,

the space of transverse traceless tensors i.e. ∂iTij = 0, T i
i = 0, and the image of V

under the map Vi → ∂iVj + ∂jVi − 2
3
(∂kVk)δij. This is another application of the above

1Note that this theorem is merely a generalization of Helmholtz’ theorem which states that any vector
field (sufficiently smooth) can be written as the sum of a divergence-less part and a curl-less part.
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theorem where X is the space of vectors, Y is the space of traceless symmetric tensors,

and Z is again the space of vectors, T maps Vi → ∂iVj + ∂jVi − 2
3
(∂kVk)δij and U maps

tensors to their divergence. Putting this all together, while also keeping plugging in the

decomposition for vectors as well, any symmetric tensor can be written as

Tij = T TT
ij + ∂iV

T
j + ∂jV

T
i + 2

(
∂i∂jυ − 1

3
∇2υδij

)
+

1

3
Tδij, (5)

where we have the following constraints/conditions

∂iT TT
ij = 0, T TTi

i = 0, ∂iV
i
T = 0, T = δijTij. (6)

And now we ask how many degrees of freedom does T TT
ij propagate? Since it’s sym-

metric that means it has at most 6 independent components. Once we take into account

its traceless-ness, that kills off an additional degree of freedom, so it can only have at

most 5. Lastly, once we incorporate the fact that T TT
ij is divergence-less, we find another

three degrees of freedom are killed off and thus we can conclude T TT
ij only propagates

two degrees of freedom. For clarity’s sake, the existence of a degree of freedom indi-

cates a particle for that field, but the number of degrees of freedom for a particular field

corresponds to the number of polarization modes.

2 Gauge Transformations

Here we give an exhaustive list of all the gauge transformations for the components of the

metric perturbation with gauge parameter Aµ. Firstly, how does the metric perturbation

transform under the action of a gauge? Well we can see that hµν transforms as

hµν → hµν − ∂µAν − ∂νAµ. (7)

Now that’s all well and good, but how do the individual components themselves

transform? First we should decompose the gauge parameter as outlined in the previous

section. We know that since hµν is a symmetric (0,2) tensor, under spatial rotations the

00 component is a scalar, the 0i component forms a 3-vector, and the ij component forms
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a symmetric spatial tensor. This allows us to decompose the metric perturbation into

it’s constituent parts. Now we write hµν as

h00 = h00 = −2Φ,

h0i = −h0
i = wi,

h = hµ
µ = ηµνhµν = 2Φ + h̄,

hij = hTT
ij + ∂iv

T
j + ∂jv

T
i + 2

(
∂i∂jΨ− 1

3
∇2Ψδij

)
+

1

3
h̄δij,

wi = wT
i + ∂iΩ,

(8)

subject to the conditions where

∂ihTT
ij = 0, δijhTT

ij = 0, ∂ivTi = ∂iwT
i = 0, (9)

and h̄ = Tr[hij] ≡ δijhij. Now we write

Aµ = (A0, A
T
i + ∂iα). (10)

Now we can plug into the transformation law from above and we get the following

transformation rules for each component:

Φ → Φ + Ȧ0, (11)

wT
i → wT

i − ȦT
i , (12)

vTi → vTi − AT
i , (13)

Ω → Ω− A0 + α̇, (14)

h̄ → h̄−∇2α, (15)

Ψ → Ψ− α. (16)

Since there are 4 scalar fields and 2 scalar parameters, we expect 4 - 2 gauge invariant

scalar fields. Likewise, since there are 2 vector fields and 1 vector gauge parameter than

we expect 2 - 1 gauge invariant vector fields. From the above transformation laws we can

define the following gauge invariant fields

4



J ≡ −Φ− Ω̇ + Ψ̈, (17)

L ≡ 1

3
(h̄− 2∇2Ψ), (18)

Mi ≡ wT
i − v̇Ti . (19)

3 Linearized General Relativity

We start off with the Lagrangian for linearized General Relativity given by

L = ∂λhµν∂
µhλν +

1

2
∂µh∂

µh− 1

2
∂λhµν∂

λhµν − ∂µh
µν∂νh. (20)

Next we perform a 3+1 decomposition of the metric perturbation which brings the

Lagrangian to the form

L =− 2∂iwjḣ
ij − ∂iwj∂

jwi + ∂ihjk∂
jhik − 1

2
˙̄h2 + 2∂iΦ∂

ih̄+
1

2
(∂ih̄)

2

+
1

2
(ḣij)

2 + (∂iwj)
2 − 1

2
(∂ihjk)

2 − 2wi∂i
˙̄h− 2∂ih

ij∂jΦ− ∂ih
ij∂jh̄.

(21)

Under the action, the Lagrangian takes on the form

S =

∫
d4x

[
2wi∂jḣ

ij + wi(∂
i∂kw

k −∇2wi) + ∂jhjk∂ih
ik +

1

2
h̄□h̄− 2Φ∇2h̄

+
1

2
hij□hij − 2wi∂i

˙̄h+ 2Φ∂i∂jh
ij + h̄∂i∂jh

ij

]
.

(22)

We can streamline the calculation a bit by recognizing that we can treat the spin 0,

1, and 2 terms separately (i.e. we can assume there are no cross terms between differing

spins). From this we can split the action into three different sectors:

S = ST + SV + SS, (23)

where

ST =

∫
−1

2
hij
TT ḧ

TT
ij +

1

2
hij
TT∇

2hTT
ij d4x , (24)
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SV =

∫
2wT

i ∇2v̇iT − wT
i ∇2wi

T +∇2viT

(
∇2vTi −

(
− ∂2

∂t2
+∇2

)
vTi

)
d4x ,

=

∫
(∂iw

T
j − ∂iv̇

T
j )

2 d4x ,

(25)

SS =

∫
2Ω∇2 ˙̄h− 8

3
Ω∇4Ψ̇− 2

3
Ω∇2 ˙̄h− 16

9
∇4Ψ∇2Ψ− 8

9
∇2Ψ∇2h̄

−1

9
h̄∇2h̄− 1

2
h̄□h̄+

4

3
∇2Ψ□∇2Ψ+

1

6
h̄□h̄− 2Φ∇2h̄

+
2

3
Φ∇2h̄+

8

3
Φ∇4Ψ+

4

3
h̄∇4Ψ+

1

3
h̄∇2h̄d4x.

(26)

Inserting the gauge-invariant fields J ≡ −Φ − Ω̇ + Ψ̈, L ≡ 2
3
(h̄ − 2∇2Ψ), and Mi =

wT
i − v̇Ti , SS and SV take on the forms

SV =

∫
1

2
(∂iMj)

2 d4x , (27)

SS =

∫
2J∇2L− 1

4
L∇2L+

1

2
LL̈ d4x , (28)

We can now analyze the true degrees of freedom that are present in hµν . First, looking

at the vector action we can see that no time derivatives of Mi are present in the action.

Therefore it is an auxiliary field and we may use its equations of motion (EOM) to

eliminate it. Proceeding accordingly we find

δL
δM i

= ∇2Mi = 0 ⇒ Mi = 0, (29)

which implies that SV = 0. Next we turn our attention to the scalar action. Since J

appears linearly with no time derivatives, we may interpret it as a Lagrange multiplier.

From there we can see that the EOM of J enforces the following constraint:

δL
δJ

= ∇2L = 0 ⇒ L = 0, (30)

and therefore, SS = 0. The total action is now

S = ST , (31)

where
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ST =

∫
1

2
hij
TT□hTT

ij d4x . (32)

Since we’ve finally eliminated all of the purely gauge fields we’re left with just the

tensor action. Since hTT
ij carries 2 independent modes, we can finally conclude our analysis

that linearized General Relativity carries with it a maximum of two degrees of freedom.
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