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We are interested in quantizing GR via the canonical quantization approach. To get

to that point, there is quite a lot of ground we have to cover. First we write down the

Einstein-Hilbert action

S =
1

2κ2

[∫
M

d4x
√
−g(R− 2Λ) + 2

∫
∂M

d3x
√
hK

]
+ Smatter, (1)

where κ2 = M−2
P = 8πG, R is the scalar curvature on the full manifold, h is the

determinant of the spatial metric , K is the trace of the extrinsic curvature and Smatter

is the action for matter.

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ℏ = 1. The reduced four dimensional Planck mass is MP = 1√
8πG

≈

2.43 × 1018 GeV. The d’Alembert and Laplace operators are defined to be □ = gµν∂µ∂ν

and ∇2 = hij∂i∂j respectively. We use boldface letters x to indicate 3-vectors and we

use x and p to denote 4-vectors. Conventions for the curvature tensors, Rλ
ρµν , Rµν , R

covariant, ∇µ, and Lie derivatives Lm are all taken from Carroll.

1 Geometry

We’ll skip some of the gory differential geometric details and motivations for now and

merely define a unit vector nµ which satisfies nµnµ = −1 and is normal to the hypersurface
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Σt. Because we want to conceptualize this surface as representing spatial slices of constant

times t, we require that Σt be a spacelike surface so that

gijV
iV j > 0, (2)

so that our norms are positive definite (i.e. length is always positive). This justifies

the constraint we place on our unit vector as being timelike (Note: our metric signature

is (−,+,+,+)). Since all of our calculations will be done on the hypersurface Σt, we

want to make sure that we’re only dealing with vectors that are not parallel to nµ. Thus

we define the projection tensor

hµν = gµν + nµnν . (3)

Note for arbitrary v that lives on the tangent space of Σ we have

hµνV
ν = gµνV

ν = Vµ, (4)

and thus we can also refer to the projection tensor as the induced, or spatial metric

on the tangent space of Σ i.e. Tp(Σ). If we define the unit normal vector as

nµ = −N∇µt, (5)

where N is the lapse function, then the components of the spatial metric reduces down

to hij = gij. Note

hµνn
ν = (gµν + nµnν)n

ν = nµ − nµ = 0, (6)

and that

gµλhλν = gµλ(gλν + nλnν) = δµν + nµnν . (7)

Now we define the extrinsic curvature Kµν as being

−Kµν = ∇νnµ + aµnν , (8)
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where aµ = nλ∇λn
µ. We can see that

aµnµ = nµn
λ∇λn

µ =
1

2
nλ∇λ(n

µnµ) = 0, (9)

and also K = −∇µn
µ. Since we have both a metric and an object to characterize how

Σ bends on M, we can define a covariant derivative Dµ ≡ hλ
µ∇λ. From the covariant

derivative on Σ, we can define the Riemannian (i.e. the intrinsic curvature) by assuming

its definition is similar to the case of the base manifold i.e.

[Dµ, Dν ]V
λ = Rλ

ρµνV
ρ, (10)

where [·, ·] is the usual commutator as defined in quantum mechanics. Next we will

relate the intrinsic curvature on Σ to the intrinsic curvature on M. Let us focus on the

DµDνV
λ term first

Dµ(DνV
λ) = hλ

σh
α
µh

β
ν∇α(DβV

σ) (11)

= hλ
σh

α
µh

β
ν∇α(h

γ
β∇γh

σ
ρV

ρ) (12)

= hλ
σh

α
µh

β
νh

σ
ρh

γ
β∇α∇γV

ρ + hλ
σh

α
µh

β
νh

σ
ρ(∇αh

γ
β)∇γV

ρ + hλ
σh

α
µh

β
νh

γ
β(∇αh

σ
ρ)∇γV

ρ

(13)

= hα
µh

β
νh

λ
ρh

γ
β∇α∇γV

ρ + hα
µh

β
νh

λ
ρ(∇αh

γ
β)∇γV

ρ + hλ
σh

α
µh

β
νh

γ
β(∇αh

σ
ρ)∇γV

ρ.

(14)

Next we’ll focus on the last two terms in the last line. The covariant derivative when

acting on the spatial metric is

hα
µh

β
ν∇γV

ρ(hλ
ρ∇αh

γ
β + hλ

σh
γ
β∇αh

σ
ρ) = hα

µh
β
ν∇γV

ρ(hλ
ρ∇α(n

γnβ) + hλ
σh

γ
β∇α(n

σnρ))

(15)

= hα
µh

β
ν∇γV

ρ[hλ
ρ(nβ∇αn

γ + nγ∇αnβ) + hλ
σh

γ
βnρ∇αn

σ].

(16)

Remembering that ∇νnµ = −Kµν − aµnν , the above line becomes
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hα
µh

β
ν∇γV

ρ[hλ
ρ(nβ∇αn

γ + nγ∇αnβ) + hλ
σh

γ
βnρ∇αn

σ] = −nγhλ
ρh

α
µh

β
νKβα∇γV

ρ − nρh
γ
νK

λ
µ∇λV

ρ

(17)

= −nγhλ
ρKµν∇γV

ρ − nρh
γ
νK

λ
µ∇λV

ρ.

(18)

We can do a partial integration on the second term ∇γ(V
ρnρ) = nρ∇γV

ρ + V ρ∇γnρ

and remembering V ρnρ = 0 which brings us

nγhλ
ρKµν∇γV

ρ − nρh
γ
νK

λ
µ∇γV

ρ = −hλ
ρKµνn

γ∇γV
ρ + hγ

νK
λ
µKγρV

ρ (19)

= Kλ
µKρνV

ρ −Kµνn
γ∇γV

λ. (20)

The DνDµV
λ expression is gotten by simply (µ ↔ ν) which implies that the Riemann

tensor is just

Rλ
ρµνV

ρ = hα
µh

β
νh

λ
ρ(∇α∇β −∇β∇α)V

ρ − (Kλ
µKρν −Kλ

νKµρ)V
ρ (21)

= hα
µh

β
νh

λ
ρR

ρ
παβV

π − (Kλ
µKρν −Kλ

νKµρ)V
ρ. (22)

Thus, the Riemann curvature on the foliated hypersurface is simply

Rλ
ρµν = hλ

σh
α
µh

β
νh

π
ρRσ

παβ − (Kλ
µKρν −Kλ

νKµρ) (23)

Next we can contract the first and third indices to get the Ricci curvature tensor

Rµν = Rλ
µλν = hα

σh
β
νh

π
µRσ

παβ − (KKµν −Kλ
νKµλ) (24)

= hα
µh

β
νRαβ + nαnσh

π
µh

β
νRσ

παβ − (KKµν −KµλK
λ
ν ). (25)

Contracting with the spatial tensor this time, the curvature scalar is simply

R = hµνRµν = (gασ + nαnσ)h
βπRσ

παβ − (K2 −KµνKµν) (26)

= (gβπ + nβnπ)Rπβ − hβπnαnσRσ
παβ − (K2 −KµνKµν) (27)

= R+ 2Rµνn
µnν − (K2 −KµνKµν). (28)
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Now that we’ve defined all of our geometric objects, we can study how these objects,

particularly the objects that are related to the extrinsic curvature of the hypersurface,

evolve as we transport a vector across the surface. The acceleration aµ = nν∇νn
µ can be

written as

aµ = nν∇νn
µ = −nν∇ν(N∇µt) = −nν∇νN∇µt−Nnν∇ν∇µt (29)

=
nν

N
nµ∇νN + nνN∇µ

(nν

N

)
=

nµnν

N
∇νN + nν∇µnν −N∇µ

(
1

N

)
(30)

=
nµnν

N
∇νN +

1

N
∇µN =

1

N
(∇µN + nµnν∇νN) (31)

=
1

N
(gµν + nµnν)∇νN =

1

N
hµν∇νN = Dµ lnN. (32)

Next we can check how the normal evolution vector changes as its parallel transported

across Σt

∇νmµ = ∇ν(Nnµ) = nµ∇νN +N∇νnµ = nµ∇νN −NKµν −Naµnν (33)

= nµ∇νN −NKµν − nνDµN. (34)

We now have all the tools to evaluate the evolution of the spatial metric:

Lmhµν = mλ∇λhµν + hµλ∇νm
λ + hλν∇µm

λ (35)

= mλ∇λhµν + hµλ(n
λ∇νN −NKλ

ν − nνD
λN) + hλν(n

λ∇µN −NKλ
µ − nµD

λN)

(36)

= Nnλ∇λ(nµnν)− 2NKµν − nνDµN − nµDνN (37)

= Naµnν +Naνnµ − 2NKµν − nνDµN − nµDνN (38)

= NnνDµ lnN +NnµDν lnN − 2NKµν − nνDµN − nµDνN (39)

= −2NKµν . (40)

We can also see
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Lmhµν = LNnhµν = Nnλ∇λhµν +Nhµλ∇νn
λ + hµλn

λ∇νN +Nhνλ∇µn
λ + hνλn

λ∇µN

(41)

= Nnλ∇λhµν +Nhµλ∇νn
λ +Nhνλ∇µn

λ (42)

= NLnhµν . (43)

Next we compute the evolution of hµ
ν

Lmh
µ
ν = mλ∇λh

µ
ν − hλ

ν∇λm
µ + hµ

λ∇νm
λ (44)

= mλ∇λ(n
µnν)− hλ

ν∇λ(Nnµ) + hµ
λ∇ν(Nnλ) (45)

= Nnνn
λ∇λn

µ +Nnµnλ∇λnν −Nhλ
ν∇λn

µ − nµhλ
ν∇λN +Nhµ

λ∇νn
λ (46)

= Nnνa
µ +Nnµaν −N(gλν + nλnν)∇λn

µ − nµ(gλν + nλnν)∇λN +N(gµλ + nµnλ)∇νn
λ

(47)

= nνD
µN −Nnνn

λ∇λn
µ = nνD

µN −Nnνa
µ = 0, (48)

so we can use hµ
ν to raise and lower indices for tensors that are being acted on by the

Lie derivative. Let us calculate the Lie derivative of the extrinsic curvature

LmKµν = mλ∇λKµν +Kµλ∇νm
λ +Kλν∇µm

λ (49)

= Nnλ∇λKµν +Kµλ(n
λ∇νN −NKλ

ν − nνD
λN) +Kλν(n

λ∇µN −NKλ
µ − nµD

λN)

(50)

= Nnλ∇λKµν + nλ(Kµλ∇νN +Kλν∇µN)− 2NKµλK
λ
ν − (nνKµλ + nµKλν)D

λN

(51)

= Nnλ∇λKµν − 2NKµλK
λ
ν − (nνKµλ + nµKλν)D

λN. (52)

It’ll be useful for us when we want to write down the Hamiltonian for GR to compute

hµλn
σhρ

νRλ
ρµνn

ρ
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hµλn
σhρ

νRλ
ρµνn

ρ = hµλn
σhρ

ν(∇ρ∇σ −∇σ∇ρ)n
λ (53)

= hµλn
σhρ

ν [∇σ(K
λ
ρ + nρD

λ lnN)−∇ρ(K
λ
σ + nσD

λ lnN)] (54)

= hµλh
ρ
νn

σ[∇σK
λ
ρ −∇ρK

λ
σ + (aσnρ − aρnσ)D

λ lnN − nσ∇ρD
λ lnN ]

(55)

= hµλh
ρ
ν [n

σ∇σK
λ
ρ +Kλ

σ∇ρn
σ + nρn

σ∇σD
λ lnN +∇ρD

λ lnN + (Dρ lnN)(Dλ lnN)]

(56)

= hµλh
ρ
νn

σ∇σK
λ
ρ −KµλK

λ
ν + hµλDνD

λ lnN + hµλh
ρ
ν(Dρ lnN)(Dλ lnN)

(57)

= hµλh
ρ
νn

σ∇σK
λ
ρ −KµλK

λ
ν +

1

N
DνDµN. (58)

Recall the Lie derivative along the direction of the normal evolution vector of the

extrinsic curvature is

LmKµν = 2NKµλK
λ
ν − (nνKµλ + nµKλν)D

λN. (59)

We can express the contracted Riemann tensor as

hµλn
σhρ

νRλ
ρµνn

ρ =
1

N
LmKµν +KµλK

λ
ν +

1

N
DνDµN. (60)

This brings equation 24 to the form

hα
µh

β
νRαβ = Rµν −

1

N
LmKµν − 2KµλK

λ
ν − 1

N
DνDµN +KKµν . (61)

Taken the trace with the spatial metric is

hµνRµν = R+Rµνn
µnν = R +K2 −KµνKµν −

1

N
hµνLmKµν −

1

N
DµD

µN (62)

= R +K2 −KijKij −
1

N
hijLmKij −

1

N
DiD

iN, (63)

where we swap the spacetime indices for spatial indices because all of the objects on

the righthand side are spatial. Now we’ll focus on the Lie derivative term

hijLmKij = Lm(h
ijKij)−KijLmh

ij = LmK −KijLmh
ij. (64)
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Now let’s calculate the Lie derivative of the inverse spatial metric

hikhkj = δij ⇒ hikLmhkj + hkjLmh
ik = 0 ⇒ Lmh

iℓ = −hikhjℓLmhkj = 2NhikhjℓKkj.

(65)

Thus Lmh
ij = 2NKij. Recalling Rµνn

µnν = 1
2
(R +K2 −KijKij −R), plugging this

and the previous result into equation (63) gives us

R = R +K2 +KijKij −
2

N
LmK − 2

N
DiD

iN. (66)

2 The Hamiltonian Density

Let us compute the 4-metric. First we define

N ≡ (−g00)−
1
2 , g0i ≡ Ni, (67)

and recall gij = hij where Ni is the shift vector. We can find the other components

by using the following

δµν = gµλgλν = gµ0g0ν + gµigiν . (68)

Now we have

δ00 = 1 = g00g00 + g0ig0i, δ0i = 0 = g00g0i + g0kgki. (69)

From the second equation we can compute g0i term

g0i = −g00Ni ⇒ 1 = g00g00 − g00N iNi ⇔ g00 = −N2 +NiN
i. (70)

A similar procedure to find the inverse metric yields

gij = hij − N iN j

N2
. (71)

Lastly, the determinant of the spatial metric can be found by
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g00 =
C00

det(gµν)
=

C00

g
, (72)

where Cµν = (−1)µ+νMµν is the co factor matrix and Mµν is the determinant of the

metric with the 0-th column and row deleted which leaves

g00 =
h

g
⇒ g =

h

g00
= −N2h. (73)

And so
√
−g = N

√
h. Finally, we can decompose the Lie derivative operator along the

direction of the normal evolution as Lm = L∂t −LN . This brings the extrinsic curvature

to the form

Kij = − 1

2N
Lmhij = − 1

2N
(L∂thij − LNhij) =

1

2N

(
−ḣij +DiNj +DjNi

)
. (74)

We finally have all the ingredients to write the Einstein-Hilbert action on 3-space:

S =
1

2κ2

[∫
M

d4x
√
−gR− 2Λ + 2

∫
∂M

d3x
√
hK

]
+ Smatter (75)

=
1

2κ2

[∫
M

d4xN
√
h[R− 2Λ +K2 +KijKij −

2

N
LmK − 2

N
DiD

iN ] + 2

∫
∂M

d3x
√
hK

]
+ Smatter.

(76)

The Lie derivative of the trace of the extrinsic curvature is

LmK = mλ∇λK = Nnµ∇µK = N∇µ(Knµ)−NK∇µn
µ = N∇µ(Knµ) +NK2. (77)

Which when plugged back into the action yields

S =
1

2κ2

[∫
M

d4xN
√
h

[
R− 2Λ +KijKij −K2 − 2∇µ(Knµ)− 2

N
DiD

iN

]
+ 2

∫
∂M

d3x
√
hK

]
+ Smatter.

(78)

The divergence term can be taken care of via the following
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−2

∫
M

N
√
h∇µ(Knµ)d4x = −2

∫
M

√
−g∇µ(Knµ)d4x (79)

= −2

∫
M

∂µ(
√
−gKnµ)d4x (80)

= 2

∫
∂M

Knµnµ

√
hd3x (81)

= −2

∫
∂M

K
√
hd3x, (82)

which exactly cancels out with the Gibbons-Hawking-York term. Since DiD
iN is

a total divergence term, we can discard it from the action. This simplifies the action

immensely to the form

S =
1

2κ2

∫
M

d4xN
√
h[R− 2Λ +KijKij −K2] + Smatter. (83)

Now we can write down the Hamiltonian for GR. We’ll need to find the conjugate

momenta of the dynamical fields. In this case, the only dynamical field is the spatial

metric hij. The Lagrangian can be written as

L = N
√
h[R− Λ + (hikhjℓ − hijhkℓ)KijKkℓ]. (84)

First we compute the partial derivative of the extrinsic curvature with respect to the

spatial metric

∂Kij

∂ḣkℓ

= − 1

2N
δkiδ

ℓ
j . (85)

Next we define the conjugate momenta of the spatial metric

πij =
∂L
∂ḣij

(86)

= N
√
h

[
(hmkhnℓ − hmnhkℓ)

(
− 1

2N
δimδ

j
n

)
Kkℓ −

1

2N
(hmkhnℓ − hmnhkℓ)δikδ

j
ℓKmn

]
(87)

= −
√
h(hikhjℓ − hijhkℓ)Kkℓ (88)

=
√
h(hijK −Kij). (89)

Now we shall invert this equation to solve for the extrinsic curvature tensor
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πij =
√
h(hijK −Kij) ⇒ hijπ

ij =
√
h(δiiK − hijK

ij) =
√
h(3K −K) = 2

√
hK. (90)

So K = 1
2
√
h
hijπ

ij. Plugging this back into the definition of the conjugate momentum

gives us

Kij =
1√
h

(
1

2
hijhkℓπ

kℓ − πij

)
⇒ Kij =

1√
h

(
1

2
hijhkℓ − hikhlℓ

)
πkℓ. (91)

Now we can calculate

KijKij −K2 = (hikhjℓ − hijhkℓ)KijKkℓ (92)

=
1

h

(
hikhjℓ − hijhkℓ

)(1

2
hijhmn − himhnj

)(
1

2
hkℓhpq − hkphqℓ

)
πmnπpq

(93)

=
πmnπpq

h

(
hikhjℓ − hijhkℓ

)(1

4
hijhmnhkℓhpq −

1

2
hijhmnhkphqℓ −

1

2
himhnjhkℓhpq + himhnjhkphqℓ

)
(94)

=
1

h

(
hmphnq −

1

2
hmnhpq

)
πmnπpq. (95)

Now we want to rewrite the first term in the last line

hmphnqπ
mnπpq =

1

2
(hmphnqπ

mnπpq + hmphnqπ
mnπpq) (96)

=
1

2
(hmphnqπ

mnπpq + hmqhnpπ
mnπqp) (97)

=
1

2
(hmphnqπ

mnπpq + hmqhnpπ
mnπpq), (98)

where in the second line we renamed the (p, q) indices and in the third line we used

the fact that the conjugate momentum is symmetric in its indices. Plugging this back

into our original equation gives us

KijKij −K2 =
1√
h
Gijkℓπ

ijπkℓ, (99)

where Gijkℓ =
1

2
√
h
(hikhjℓ+hiℓhjk−hijhkℓ) is the Wheeler-DeWitt metric. The Hamil-

tonian given by the Legendre transformation is then
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H = ḣijπ
ij − L = ḣijπ

ij −N
√
h[R− 2Λ +KijKij −K2] (100)

= ḣijπ
ij −N [Gijkℓπ

ijπkℓ +
√
h(R− 2Λ)]. (101)

Plugging this back into the action gives

S =
1

2κ2

∫
d3x dt

[
ḣijπ

ij −NHDW

]
, (102)

where HDW = Gijkℓπ
ijπkℓ +

√
h(R− 2Λ).
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