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1 Introduction

Gravitational waves are the newest frontier for gaining insight into the inner workings of

the universe. It provides a window for us to understand the world around us in a way

that hasn’t been seen since the invention of the telescope. Particularly, the physics that

we may discover through the Cosmic Gravitational Wave Background could possibly be

paradigm shifting as the information that is carried by such an artifact could stretch

to the first few seconds after the birth of our expanding universe. Understanding this

background and the observables we may extract from it could answer questions about

quantum gravity, inflation, and many more questions that are too numerous to name. As

a result, it is crucial that we may study GWs and this potential background as it could

lead to the next breakthrough in physics. Here we fill in the derivation of the equations

shown in [1].

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ℏ = 1. The reduced four dimensional Planck mass is MP = (8πG)−1/2 ≈

2.43× 1018GeV. The d’Alembert and Laplace operators are defined to be □ = ∂µ∂
µ and

∇2 = ∂i∂
i respectively. We use boldface letters r to indicate 3-vectors and we use x and

p to denote 4-vectors. Conventions for (anti-)symmetrization for tensors, the curvature

tensors, covariant and Lie derivatives are all taken from Carroll. Greek indices (µ, ν . . .)

and Latin indices (a, b, c . . .) denote spacetime indices.
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2 Gauge Symmetry and Equations of Motion

We start off with the gauge symmetry inherent in GR

gµν(x) → g′µν(x
′) = gρλ

∂xρ

∂x′µ
∂xλ

∂x′ν
. (2.1)

We can express this gauge transformation infinitesimally by xµ → x′µ = xµ + ξµ(x).

How does the metric perturbation transform under this infinitesimal generator? We can

plug it into the transformation law for the metric above to get

η′µν + h′µν = gλρ
∂xλ

∂x′µ
∂xρ

∂x′ν
=
∂(x′λ − ξλ(x′ − ξ))

∂x′µ
∂(x′ρ − ξρ(x′ − ξ))

∂x′ν
(ηλρ + hλρ). (2.2)

We can expand the gauge parameter ξµ to first order to get

η′µν + h′µν =

[
δλµδ

ρ
µ − δλµ

∂ξρ

∂x′ν
− δρν

∂ξλ

∂x′µ

]
(ηλρ + hλρ) (2.3)

= ηµν + hµν − ηλρδ
λ
µ

∂ξρ

∂x′ν
− ηλρδ

ρ
ν

∂ξλ

∂x′µ
. (2.4)

Canceling out the Minkowski metric on both sides leaves us with the following identity

h′µν = hµν − ∂µξν − ∂νξµ. (2.5)

It is easy to see (using the same method we used for deriving the gauge symmetry)

that for a global Lorentz transformation i.e. xµ → x′µ = Λµνx
ν the linearized theory

is also symmetric under this rotation i.e. given that gµν → g′µν(x
′) = Λ λ

µ Λ ρ
ν gλρ(x) the

metric perturbation transforms as

η′µν + h′µν = Λ λ
µ Λ ρ

ν (ηλρ + hλρ) = ηµν + Λ λ
µ Λ ρ

ν hλρ ⇒ h′µν(x
′) = Λ λ

µ Λ ρ
ν hλρ(x). (2.6)

In addition to constant translations x′µ = xµ + aµ, we can say that the linearized

theory is invariant under finite Poincare transformations (3 translations, 3 rotations, and

4 boosts). Since we’re interested in the linearized theory, it would be nice to have what

the curvature would be offhand, so we don’t have to keep looking for that information.

We want to know what the curvature will be up to first order in h. The Riemann, Ricci,

and Einstein tensors along with the Ricci scalar takes the form
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R
(1)
αβµν =

1

2
(∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ + ∂β∂µhαν), (2.7)

R(1)
µν = −1

2
∂µ∂νh− 1

2
□hµν +

1

2
∂α∂µhνα +

1

2
∂α∂νhµα, (2.8)

R(1) = ∂µ∂νh
µν −□h, (2.9)

G(1)
µν = −1

2
(∂µ∂νh+□hµν − ∂ρ∂µhνρ − ∂λ∂νhµλ + ∂λ∂ρh

λρηµν −□hηµν), (2.10)

where h = hµµ = ηµνhµν . It is convenient for us to introduce the term hµν = hµν− 1
2
hηµν

which yields the following representation for the Einstein tensor

G(1)
µν = −1

2
(□h̄µν + ηµν∂

λ∂ρh̄λρ − 2∂λ∂(µh̄ν)λ). (2.11)

Recalling that Einstein’s equations involve contributions from matter as a source for

the curvature, we get

□h̄µν + ηµν∂
λ∂ρh̄λρ − 2∂λ∂(µh̄ν)λ = −16πGTµν . (2.12)

Now we introduce the De Donder/Harmonic/Lorentz/Hilbert Gauge:

∂νhµν −
1

2
∂µh = ∂ν h̄µν = 0. (2.13)

This gauge is comes from the condition ∂µ(
√
−ggµν) = 0 and is essentially the GR

analog to the Lorenz gauge of E&M ∂µA
µ = 0. In order to go forward, it is convenient to

understand how h̄µν varies under a diffeomorphism. First we show how the trace of the

perturbation transforms:

h′µν = hµν − ∂µξν − ∂νξµ ⇒ h′ = ηµνh′µν = h− 2∂µξ
µ. (2.14)

Thus, h̄µν goes as

h̄µν → h̄′µν = h′µν −
1

2
h′ηµν = hµν −

1

2
hηµν − ∂µξν − ∂νξµ + ∂ρξ

ρηµν

= h̄µν − ∂µξν − ∂νξµ + ∂ρξ
ρηµν .

(2.15)
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The De Donder condition under a gauge transformation goes as

∂ν h̄µν → (∂ν h̄µν)
′ = ∂ν h̄µν −□ξµ. (2.16)

Thus, we can always move to a frame in which the De Donder gauge holds i.e. if

∂ν h̄µν = fµ(x), (2.17)

then we can pick a vector field ξµ such that

□ξµ = fµ ⇒ ξµ(x) =

∫
d4y G(x− y)fµ(y), □xG(x− y) = −δ(4)(x− y). (2.18)

The De Donder gauge is favored because Einstein’s equations simplifies down to

G(1)
µν = □h̄µν + ηµν∂

λ∂ρh̄λρ − 2∂λ∂(µh̄ν)λ = □h̄µν = −16πGTµν . (2.19)

Taking the divergence of the above equation yields

∂νTµν = − 1

16πG
□∂ν h̄µν = 0. (2.20)

Because we are interested in investigating gravitational waves as well as the effect on

test particles, it is necessary to look regions of spacetime for which we are outside the

source i.e. Tµν = 0 which implies □h̄µν = 0. Now even though linearized GR carries only

two degrees of freedom (and we will show this in the appendix), but hµν carries a total

of 10 degrees of freedom (dof) (naively we would say hµν has 16 dofs but hµν = hνµ kills

off 4 dofs) so we have extraneous fields we don’t need. Working with h̄µν kills off an

additional 4 dofs so we are left with 6 in all. To get rid of the redundant information, we

have to fix a gauge.

Given that ∂ν h̄µν → ∂ν h̄µν −□ξµ then we can require □ξµ = 0 to preserve the gauge

condition ∂ν h̄µν = 0. Now we define the new gauge parameter

ξµν = ∂µξν + ∂νξµ − ∂λξ
ληµν , (2.21)

which also carries □ξµν if we restrict □ξµ = 0. We can use ξµν to eliminate the

additional 6 dofs. The modified perturbation transforms as
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h̄µν → h̄µν − ξµν ⇒ h̄→ h̄− ξµµ = h̄+ 2∂λξ
λ = h̄+ 2ξ̇0 + ∂iξ

i. (2.22)

We can pick 2ξ̇0 = −(h̄+ 2∂iξ
i) to kill off the trace term in order to bring our count

to 5 dofs left. Next we can see that

h̄0i → h̄0i − ξ0i = h̄0i − ξ̇i − ∂iξ0. (2.23)

And so we choose ξ̇i = h̄0i − ∂iξ0 to reduce the dof count to 2 and so we are finally

done. We have fixed/accounted for all the extraneous dofs from the theory and are now

in a position to solve the equations of motion. Given that we are working in a gauge

where the perturbation is traceless, there is now no distinction between h̄µν and hµν and

so we’ll just be working with the original metric perturbation from now on. In light of

the calculation we just did, the De Donder condition yields

∂νh0ν = ∂0h00 + ∂ih0i = 0 ⇒ h00 = 0, (2.24)

so now both hµν and h̄µν both only carry 2 degrees of freedom. Notice we also have

∂νhiν = ∂0hi0 + ∂jhij = 0 ⇒ ∂jhij = 0. (2.25)

So not only is the metric perturbation traceless, it is also transverse i.e. it’s signals

propagate transverse the direction of motion. We can conclude from this that the De

Donder Gauge leads to the transverse traceless gauge, but only outside where the source

of located. Thus, the full gauge conditions are

h0µ = 0, hii = 0, ∂jhij = 0. (2.26)

From henceforth, we shall denote the metric perturbation (and the fact that it is both

traceless and transverse) as hTTij . Thus, the wave equation reads

□hTTij = 0. (2.27)

In analogy with E&M, we can make an ansatz for this differential equation to be
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hTTij (x) = ϵij(p)e
ip·x where ϵij is a polarization tensor. Writing pµ = (ω,p) and plugging

this all into the equation of motion, we get the dispersion relation

[
−(−iω)2 + (ip)2

]
ϵij(p) = 0 ⇒ ω = |p|. (2.28)

Defining the momentum unit vector in the usual way p̂ = p/|p|, we can see that the

perturbation tensor is (unsurprisingly) transverse to this direction

∂jhTTij = ϵijip
jeip·x = njhij = 0. (2.29)

Aligning our coordinate system so that the GW propagates in the z-direction (i.e.

p̂ = ẑ) then the tensor becomes

hTTij =


h+ h× 0

h× −h+ 0

0 0 0


ij

cos(ω(t− z)), (2.30)

where we used the fact that p · r = |p||r| cos θ = ωz, ω = |p| and by convention we

take the real part of the wave. The amplitudes h+ and h× denote the plus and cross

polarizations of gravitational waves. We can write the above a bit more succinctly by

recognizing we can restrict the matrix to be 2x2

hTTab =

h+ h×

h× −h+


ab

cos(ω(t− z)). (2.31)

Thus, the spacetime interval then becomes

ds2 = gµν dx
µ dxν =− dt2 + (1 + h+) cos(ω(t− z)) dx2 + 2h× cos(ω(t− z)) dx dy

+ (1− h+) cos(ω(t− z)) dy2 + dz2 .

(2.32)

Next we define the projection tensor

Pij(p̂) = δij − ninj. (2.33)
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The projection tensor takes vectors and projects out the component that is transverse

the direction of propagation. We can see that it has the following properties

njPij = njδij − njninj = 0, (2.34)

PikPkj = (δik−nink)(δkj−nknj) = δikδkj− (nknjδik+ninkδkj) = δij−ninj = Pij, (2.35)

and Pii = 3 − 1 = 2. From here we can construct a projection operator for tensors

which maps tensors to their transverse traceless component i.e.

Λij,kℓ = PikPjℓ −
1

2
PijPkℓ. (2.36)

We can show that this map shares all the same features as the original projection map

Λij,kℓΛkℓ,mn =

(
PikPjℓ −

1

2
PijPkℓ

)(
PkmPℓn −

1

2
PkℓPmn

)
= PikPjℓPkmPℓn −

1

2
(PijPkℓPkmPℓn + PikPjℓPkℓPmn) +

1

4
PijPkℓPkℓPmn

= PimPjn −
1

2
PiℓPjℓPmn −

1

2
PijPmℓPℓn +

1

4
PijPℓℓPmn

= PimPjℓ −
1

2
PijPmn = Λij,mn,

(2.37)

and that

Λii,kℓ = PikPiℓ −
1

2
PiiPkℓ = 0, Λij,kk = PikPjk −

1

2
PijPkk = 0. (2.38)

We can express the projection tensor in terms of the original unit vector p̂

Λij,kℓ(p̂) = (δik − nink)(δjℓ − njnℓ)−
1

2
(δij − ninj)(δkℓ − nknℓ)

= δikδjℓ −
1

2
δijδkℓ − (ninkδjℓ + njnℓδik) +

1

2
(ninjδkℓ + nknℓδij + ninjnknℓ).

(2.39)

Thus for any symmetric 3-tensor Tij, we define the new tensor T TTij given by

T TTij = Λij,kℓTkℓ. (2.40)
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Notice that if we can write Tij as a plane wave we get this relation for free. Going

back to the equations of motion for the metric perturbation □hTTij = 0 we can write down

the solution in much the same way we do in any mass-less classical field theory

hTTij (x) =

∫
d3p

(2π)3
(Aij(p)e

ip·x +A∗
ij(p)e

−ip·x). (2.41)

Notice that the transverse and traceless conditions imply that the amplitudes must

satisfy

hTTii = Aii = 0, ∂jhTTij = pjAij = 0. (2.42)

Now recall: pµ = (ω,p), |p| = ω = 2πf , p̂ = p/|p|. We can write p = |p|p̂ = 2πf p̂

and d3p = |p|2 d|p| dΩ = (2π)3f 2 df d2p̂ where we denote d2p̂ = d cos θ dϕ. This brings

the perturbation to the form

hTTij (x) =

∫ ∫ ∞

0

f 2(Aij(p)e
−2πif(t−p̂·r) + C.C.) df d2p̂ , (2.43)

where we used p · x = −ωt + p · r = −2πft + 2πf p̂ · r = −2πf(t − p̂ · r). If we

assume that the GW was emitted from a single (astrophysical) source, we can write the

amplitude as Aij(p) = Aij(f)δ
(2)(p̂ − p̂0) where p̂0 is the direction of the propagating

wave. Plugging this into the integral gives us

hab(x) =

∫ ∞

0

f 2

∫
(Aab(f)δ

(2)(p̂− p̂0)e
−2πif(t−p̂·r) + c.c.) d2p̂ df

=

∫ ∞

0

f 2(Aab(f)e
−2πif(t−p̂0·r) + A∗

ab(f)e
2πif(t−p̂0·r)) df ,

(2.44)

where we restrict ourselves to the a, b indices and drop the TT superscript since using

the a, b indices already implies we’re in the TT gauge. If we center our detector near the

origin then exp(2πif p̂ · r) ≈ 1 since r ≈ 0. Writing

h̃ab(f) = f 2Aab(f) =

h̃+(f) h̃×(f)

h̃×(f) −h̃+(f)


ab

. (2.45)

Lastly we can see that if we let f → −f in the second term and assume that hab is a

real function (otherwise we just take the real part in the end anyway), we get
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hab(t, r = 0) =

∫ ∞

0

h̃ab(f)e
−2πift dt−

∫ −∞

0

h̃∗ab(−f)e2πift df

=

∫ ∞

0

h̃ab(f)e
−2πift dt+

∫ 0

−∞
h̃ab(f)e

−2πift dt =

∫ ∞

−∞
h̃ab(f)e

−2πift df ,

(2.46)

where we used the fact that the metric perturbation is real i.e. h̃∗ab(−f) = h̃ab(f).

This gives us the following Fourier pair

hab(t) =

∫ ∞

−∞
h̃ab(f)e

−2πift df , h̃ab(f) =

∫ ∞

−∞
hab(t)e

2πift dt . (2.47)

Now suppose û, v̂ are unit vectors such that û · p̂ = v̂ · p̂ = 0. Define the polarization

tensors

ϵ+ij(p̂) ≡ ûiûj − v̂iv̂j, ϵ×ij(p̂) ≡ ûiv̂j + v̂iûj. (2.48)

We can see that

ϵ+ijϵ
ij
+ = (ûiûj − v̂iv̂j)(û

iûj − v̂iv̂j) = 1− 0− 0 + 1 = 2, (2.49)

ϵ×ijϵ
ij
× = (ûiv̂j + v̂iûj)(û

iv̂j + v̂iûj) = 1− 0− 0 + 1 = 2, (2.50)

ϵ+ijϵ
ij
× = (ûiûj − v̂iv̂j)(û

iv̂j + v̂iûj) = 0 + 0− 0− 0 = 0. (2.51)

Thus, we have the relation

ϵAijϵ
ij
B = 2δAB, (2.52)

where A = +,×. Now when we orient our coordinate system such that p̂ = ẑ ⇒ û =

x̂, v̂ = ŷ the polarization tensors in this basis becomes

ϵ+ab ≡ x̂ax̂b − ŷaŷb =

1
0

[
1 0

]
−

0
1

[
0 1

]
=

1 0

0 −1


ab

, (2.53)

ϵ×ab ≡ x̂aŷb + ŷax̂b =

1
0

[
0 1

]
+

0
1

[
1 0

]
=

0 1

1 0


ab

. (2.54)
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Thus we can write the amplitude as

f 2Aij(f, p̂) =
∑

A=+,×

h̃A(f, p̂)ϵ
A
ij(p̂), (2.55)

which brings the perturbed metric to the full form

hab(t, r) =
∑

A=+,×

∫
df

∫
d2p̂ h̃A(f, p̂)ϵ

A
ab(p̂)e

−2πif(t−p̂·r). (2.56)

3 Dynamics of Free Non-Relativistic Particles in the

Presence of Gravitational Waves

Consider a gravitational wave along the z-axis of a wave vector k = kẑ. The gravitational

wave has the form

hµν(r, t) = e−ik(t−z)(a(k)h+µν(k) + b(k)h×µν(k) + C.C.). (3.1)

Note in the Transverse Traceless Gauge h̄µµ = 0 which implies

h̄µµ = hµµ −
1

2
δµµh = −h = 0 ⇒ h̄µν = hµν . (3.2)

Thus we have

hµν(x) = Re
{
e−ik(t−z)(a(k)h+µν(k) + b(k)h×µν(k))

}
, (3.3)

with h+xx = −h+yy = 1, h×xy = h×yx = 1 and all others are zero. In the TT gauge we have

Rx
0x0 = Rx0x0 = −1

2
ḧxx, Ry

0y0 = Ry0y0 = −1

2
ḧyy = −Rx0x0, Ry

0x0 = Ry0x0 = −1

2
ḧxy = Rx

0y0 = −Rx0y0,

(3.4)

where overhead dots denote d
dt
. All other components of the Riemann tensor vanish.

Now we consider a particle initially at rest that is hit by the gravitational wave. Its

geodesic equation

dUµ

dτ
+ ΓµαβU

αUβ = 0, (3.5)
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and consider the acceleration shortly after being hit by the gravitational wave at

τ = 0, Uµ(0) = (1, 0, 0, 0) which gives us

dUµ

dτ

∣∣∣∣
τ=0

= −Γµ00 ≈ −1

2
ηµν(∂thν0 + ∂th0ν − ∂νh00) = 0. (3.6)

In TT-gauge, a particle originally at rest remains at rest. But we asked a coordinate

dependent question since we asked about the acceleration with respect to a fixed coordi-

nate. As the gravitational wave passes, both spacetime and the particle are perturbed in

the same way, like a buoy on the surface of the ocean as the waves passes.

The buoy is at rest with respect to the fluid. But what about two particles (buoys)

separated by a geodesic disturbance (proper distance) when the wave passes? Write

ds2 = −gµν dxµ dxν = −(ηµν + hµν) dx
µ dxν . (3.7)

Consider one particle at the origin and another at a coordinate distance ∆L along the

x direction

∆S(t) =

∫ ∆L

0

(1 + hxx(r, t))
1/2 dx , (3.8)

and consider k∆L≪ 1 (∆L
λ

≪ 1) with wavelength λ. The proper distance is then

∆S(t) ∼ ∆L

[
1 +

1

2
hxx(0, t)

]
, (3.9)

and the fractional displacement is

δ(t) =
∆S(t)−∆L

∆L
≈ 1

2
hxx(0, t), (3.10)

which is called the fractional strain.

3.1 Generalizations

Consider an array of particles at t = 0 that form a ring in the x − y plane with a test

particle at the origin.
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Figure 1: Coor-
dinate plane for
a ring of parti-
cles centered at
the origin a dis-
tance ∆L away.

The coordinate of a particle on the ring is p̂∆L. Consider a grav-

itational wave propagating along the z axis (i.e. out of the page) with

hµν(r, t) = (ah+µν + bh×µν) sin(k(t− z)), (3.11)

(monochromatic) with a long wavelength k∆L ≪ 1. The proper

distance becomes

∆S(t) ≈ ∆L

[
1 +

1

2
(ah+ij + bh×ij)p̂ip̂j sin(kt)

]
, (3.12)

and the fractional strain is

δ =
∆S −∆L

∆L
= sin(kt)

[a
2
(p̂xp̂x − p̂yp̂y) + bp̂xp̂y

]
, (3.13)

where we used h+, h× obtained above for the wave with k = (0, 0, k). First suppose

a > 0, b = 0, as t ranges from 0 to t = π
2k

the ring stretches along x and flattens along y.

From t = π
2k

→ t = 2π
2k

we are back to the initial form. From t = 2π
2k

→ 3π
2k

stretches along

the y axis and flatters along x

Figure 2: The first of two polarization modes of propagating gravitational waves. This is
the plus-polarization where a ring of particles oscillate in the patter of a + sign.

This is the h+ polarization. Now suppose a = 0, b > 0. Now the ring of particles

stretches along diagonals at 45 degrees (p̂x, p̂y > 0 for 45◦) as t = 0 → π
2k

and we get

back to the initial form for t = π
2k

→ 2π
2k

stretches along 135◦ between 2π
2k

→ 3π
2k

and back

to the original form between 3π
2k

→ 4π
2k

This is the h× polarization.
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Figure 3: The second of the polarization modes for gravitational waves. This is the cross-
polarization where a ring of particles oscillate in the patter of an × sign.

4 Energy and Momentum of Gravitational Waves

An important question we can ask is how to distinguish curvature due to the background

metric and curvature as a result from propagating gravitational waves. Consider expand-

ing the metric around some dynamical background spacetime

gµν(x) = ḡµν(x) + hµν(x), (4.1)

where ḡµν is the background metric and gµν is the full metric where we raise and

lower indices with respect to the background metric. One important concept for this is

to introduce different scales for which these variations take place over. Let LB be the

length scale of the background and fB be its frequency. Thinking about different scales

is a natural way to try and distinguish between background curvature and curvature

introduced by gravitational waves. First we start from Einstein’s equations

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
. (4.2)

We can expand out the curvature tensor and only keep up to quadratic powers of h

Rµν = R̄µν +R(1)
µν +R(2)

µν + . . . , (4.3)

where the overhead bars denote the curvature tensor constructed from ḡµν that con-

tains only the low frequency mode, R
(1)
µν are the linear order h’s that contains only the
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high frequency modes, and R
(2)
µν is the quadratic h’s composed of both high and low

frequency modes. Thus we can write

R̄µν = −[R(2)
µν ]

low + 8πG

(
Tµν −

1

2
gµνT

)low

, (4.4)

i.e. the low frequency modes

R(1)
µν = −[R(2)

µν ]
high + 8πG

(
Tµν −

1

2
gµνT

)high

, (4.5)

the high frequency modes. Because we are working with an arbitrary dynamical

background spacetime, we must promote partial derivatives to covariant derivatives

R(1)
µν =

1

2

[
D̄λ(D̄µhνλ + D̄νhµλ)− D̄λD̄λhµν − D̄µD̄νh

]
, (4.6)

where D̄µ is the covariant derivative with respect to ḡµν . The quadratic order curva-

ture tensor is then

R(2)
µν =

1

2
ḡλρḡαβ

[
1

2
D̄µhραD̄νhλβ + (D̄ρhνα)(D̄λhµβ − D̄βhµλ)

+hρα(D̄νD̄µhλβ + D̄βD̄λhµν − D̄βD̄νhµλ − D̄βD̄µhνλ)

+

(
1

2
D̄αhρλ − D̄ρhαλ

)
(D̄νhµβ + D̄µhνβ − D̄βhµν)

]
.

(4.7)

Next we introduce a time scale t̄ that is much longer than the period 1/fB of the

gravitational wave (i.e. hµν is a high frequency perturbation) which when we average

over the low frequency Einstein Equations we get

R̄µν = −
〈
R(2)
µν

〉
+ 8πG

〈
Tµν −

1

2
gµνT

〉
, (4.8)

where the angle brackets denote a spatial average. Because Tµν will already be quite

smooth, it’ll be constant over the scale for which we are averaging so〈
Tµν −

1

2
gµνT

〉
≈ T µν −

1

2
ḡµνT . (4.9)

We can then define a stress energy tensor for the quadratic contributions
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τµν ≡ − 1

8πG

〈
R(2)
µν − 1

2
ḡµνR

(2)

〉
, (4.10)

where R(2) = ḡµνR
(2)
µν . The trace is then

τ = ḡµντµν = − 1

8πG
ḡµν

〈
R(2)
µν

〉
+

1

16πG
ḡµν ḡµν

〈
R(2)

〉
=

1

8πG

〈
R(2)

〉
. (4.11)

Therefore we have〈
R(2)
µν − 1

2
ḡµνR

(2)

〉
=

〈
R(2)
µν

〉
− 1

2
ḡµν

〈
R(2)

〉
= −8πGτµν

⇔
〈
R(2)
µν

〉
= −8πGτµν +

1

2
ḡµν(8πGτ) = −8πG

(
τµν −

1

2
ḡµντ

)
.

(4.12)

Plugging all of this into the expression for the background curvature tensor gives us

R̄µν = −
〈
R(2)
µν

〉
+ 8πG

〈
Tµν −

1

2
gµνT

〉
= 8πG

(
τµν −

1

2
ḡµντ

)
+ 8πG

(
T µν −

1

2
ḡµνT

)
= 8πG

[
(T µν + τµν)−

1

2
ḡµν(T + τ)

]
,

(4.13)

which we can rewrite this as

R̄µν −
1

2
ḡµνR̄ = 8πG(T µν + τµν). (4.14)

These are the coarse-grained Einstein Equations. This relates the curvature that is

induced by a localized matter distribution and by the perturbation to the background to

the background spacetime itself.

Now lets derive an explicit expression for the stress tensor for gravitational waves.

Since we have a method to relate τµν to the quadratic order metric perturbations, it

is simply a matter of plugging in the expression of 4.7 into 4.10. However we can do

better. If we assume we’re in the transverse-traceless gauge, the equation for τµν reduces

immensely. When we also realize that multiple terms of equivalent up to a sign under an

integration by parts, we get

〈
R(2)
µν

〉
=

1

4

〈
∂µhλρ∂νh

λρ
〉
⇒ τµν =

1

32πG

〈
∂µhλρ∂νh

λρ
〉
. (4.15)
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An alternative way to derive the stress energy tensor in the TT gauge is to consider

Noether’s Theorem

τµν =

〈
− ∂L
∂(∂µhλρ)

∂νhλρ + ηµνL
〉
. (4.16)

The Lagrangian for linearized GR is

L = −M
2
P

4

(
∂λhµν∂

µhλν +
1

2
∂µh∂

µh− 1

2
∂λhµν∂

λhµν − ∂µh
µν∂νh

)
, (4.17)

i.e. this is the Lagrangian for which when you plug it into the Euler-Lagrange Equa-

tions, you recover Einstein’s Equations for linearized GR. Imposing the TT gauge condi-

tion reduces the Lagrangian to

L = −1

8
M2

P∂µhαβ∂
µhαβ. (4.18)

Inserting this into the formula for the Noether current gives

∂L
∂(∂µhλρ)

= −M
2
P

4

(
∂(∂σhαβ)

∂(∂µhλρ)
∂σhαβ

)
= −M

2
P

4
∂σhαβδµσδ

λ
αδ

ρ
β = −M

2
P

4
∂µhλρ. (4.19)

And it immediately follows

⟨L⟩ = −M
2
P

8

〈
∂µhλρ∂

µhλρ
〉
. (4.20)

Which leads to the following expression for the stress energy tensor

τµν =

〈
M2

P

4
∂µhλρ∂νhλρ + ηµν

(
−M

2
P

8
∂σhλρ∂

σhλρ
)〉

=
M2

P

4

〈
∂µhλρ∂νhλρ

〉
, (4.21)

wherein the last equality we used the fact that in the TT gauge, the equations of

motion enforce □hµν = 0 and we neglected the boundary term because that is of order

O(1/LB) and therefore is negligible.

5 The Gravitational Stochastic Background

The Stochastic Background of Gravitational Waves can emerge from the incoherent su-

perposition of a large number of astrophysical sources that are too weak to be detected
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separately and such that the number of sources that contribute to each frequency bin is

much larger than one. We make some assumptions about the background

Stationarity : This means that all n-point correlation functions can only depend on

time differences as opposed to absolute time i.e.

⟨hA(t)hB(t′)⟩ ∝ f(t− t′)

but not on t, t′ separate. This means we must have

⟨h̃∗A(f)h̃B(f ′)⟩ ∝ δ(f − f ′).

The typical time scale it can change substantially is of order the age of the universe.

Gaussianity : All n-point correlators are or can be reduced to sums and products of

the 2-point correlation function (and the vacuum expectation value but since we impose

stationarity, the VEV has to be a constant that we set to zero for simplicity). This is a

direct consequence of the central limit theorem.

Isotropy : Because the early universe was highly isotropic (and we know this from the

CMB), we expect the gravitational background should be isotropic as well. This implies

⟨h̃∗A(f, p̂)h̃B(f ′, p̂′)⟩ ∝ δ2(p̂, p̂′)

where

δ2(p̂, p̂′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′). (5.1)

This comes from the idea that waves that are coming from different directions should

be uncorrelated.

Polarization: Lastly we expect the background to be unpolarized i.e.

⟨h̃∗A(f, p̂)h̃B(f ′, p̂′)⟩ ∝ δAB

All of these conditions taken together gives us
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〈
h̃∗A(f, p̂)h̃B(f

′, p̂′)
〉
= δ(f − f ′)

δ2(p̂, p̂′)

4π
δAB

Sh(f)

2
, (5.2)

where Sh(f) is the spectral density of the stochastic background with dimensions

Hz−1 and is an even function Sh(−f) = Sh(f). The factor of 4π is there for normalization

purposes ∫
d2p̂

∫
d2p̂′ ⟨h̃∗A(f, p̂)h̃B(f ′, p̂′)⟩ = δ(f − f ′)δAB

1

2
Sh(f). (5.3)

We can compute the mean-squared of the metric perturbation by first recalling our

functional form of the perturbation

hij(t) =
∑

A=+,×

∫
df

∫
d2p̂ h̃A(f, p̂)ϵ

A
ij(p̂)e

−2πift, (5.4)

where we’ve set r = 0 because we’ve placed the origin at the detector. Next we can

see that

hij(t)h
ij(t) =

[ ∑
A=+,×

∫
df

∫
R
d2p̂ h̃A(f, p̂)ϵ

A
ij(p̂)e

−2πift

][ ∑
B=+,×

∫
R
df ′

∫
d2p̂′ h̃B(f

′, p̂′)ϵijB(p̂
′)e−2πif ′t

]

(5.5)

=
∑

A,B=+,×

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ h̃A(f, p̂)h̃B(f

′, p̂′)ϵAij(p̂)ϵ
ij
B(p̂

′)e−2πi(f+f ′)t.

(5.6)

Moving forward, we make the change of variables f → −f and use the fact that the

amplitude of the gravitational wave must be real so h̃A(−f) = h̃∗A(f) we can write

hij(t)h
ij(t) =

∑
A,B=+,×

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ h̃∗A(f, p̂)h̃B(f

′, p̂′)ϵAij(p̂)ϵ
ij
B(p̂

′)e2πi(f−f
′)t,

(5.7)

where the minus sign from the measure df → − df , exactly cancels out from the

minus sign in the new integration region
∫ −∞
∞ = −

∫∞
−∞. Now we can average over this

product
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〈
hij(t)h

ij(t)
〉
=

∑
A,B=+,×

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ ⟨h̃∗A(f, p̂)h̃B(f ′, p̂′)⟩ϵAij(p̂)ϵ

ij
B(p̂

′)e2πi(f−f
′)t

(5.8)

=
∑

A,B=+,×

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ δ(f − f ′)

δ2(p̂, p̂′)

4π
δAB

Sh(f)

2
ϵAij(p̂)ϵ

ij
B(p̂

′)e2πit(f−f
′).

(5.9)

Integrating f ′, p̂′ as well as using the Kronecker delta, the mean reduces down to

〈
hij(t)h

ij(t)
〉
=

1

2 · 4π
∑

A=+,×

∫
R
df

∫
d2p̂ ϵAij(p̂)ϵ

ij
A(p̂)Sh(f) (5.10)

=
1

2π

∫
df

∫
d2p̂Sh(f) = 2

∫
R
Sh(f) df = 4

∫ ∞

0

Sh(f) df , (5.11)

wherein we used the normalization of the polarization tensors

∑
A=+,×

ϵAij(p̂)ϵ
ij
A(p̂) = 4, (5.12)

and in the last equality we used the evenness of Sh(f). To get a physical understanding

of what this spectral density means, we can look at the energy density of gravitational

waves

ρGW =
1

32πG
⟨ḣijḣij⟩. (5.13)

Recall the critical energy density required to close the universe is given by

ρc =
3H2

0

8πG
≃ 1.688× 10−8h20 erg/ cm

3, (5.14)

where h0 is the little Hubble parameter which is used to parameterize the uncertainty

of the Hubble constant. Of which, we define to be h0 ≃ .73. We also can define the

fractional energy density to be

ΩGW ≡ ρGW

ρc
. (5.15)

Now to derive a physical interpretation for the mean squared perturbation, let us

compute the spectral density for the energy density
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ρGW =

∫ f=∞

f=0

d(log f)
dρGW

d(log f)
, (5.16)

and we choose to integrate over d log f in order to have

ΩGW(f) ≡ 1

ρc

dρGW

d log f
, (5.17)

be dimensionless. We can also write down a spectral density for the frequency-

dependent fractional energy density

ΩGW =

∫ f=∞

f=0

d(log f) ΩGW(f). (5.18)

Now we can compute the spectral density of the energy density. First we write

ḣij(t) = (−2πi)
∑

A=+,×

∫
df

∫
d2p̂ fh̃A(f, p̂)ϵ

A
ij(p̂)e

−2πift. (5.19)

Then we get

ḣijḣ
ij =

[
(−2πi)

∑
A

∫
R
df

∫
d2p̂ fh̃Aϵ

A
ije

−2πift

][
(−2πi)

∑
B

∫
R
df ′

∫
d2p̂′ f ′h̃Bϵ

ij
Be

−2πif ′t

]
(5.20)

= (−2πi)2
∑
A,B

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ ff ′h̃A(f, p̂)h̃B(f

′, p̂′)ϵAij(p̂)ϵ
ij
B(p̂

′)e−2πi(f+f ′)t.

(5.21)

And again we let f → −f and use h̃A(−f) = h̃∗A(f) to get〈
ḣijḣ

ij
〉
= −(−2πi)2

∑
A,B

∫
R
df

∫
R
df ′

∫
d2p̂

∫
d2p̂′ ff ′⟨h̃∗A(f, p̂)h̃B(f ′, p̂′)⟩ϵAij(p̂)ϵ

ij
B(p̂

′)e2πi(f−f
′)t

(5.22)

=
∑
A,B

∫
R
df

∫
∞
df ′ ff ′

∫
d2p̂

∫
d2p̂′ δ(f − f ′)

δ2(p̂, p̂′)

4π
δAB

Sh(f)

2
ϵAij(p̂)ϵ

ij
B(p̂

′)e−2πift(f−f ′)

(5.23)

=
π

2

∑
A=+,×

∫ ∞

−∞
df

∫
d2p̂ f 2Sh(f)ϵ

A
ij(p̂)ϵ

ij
B(p̂) (5.24)

= (4π)2
∫ ∞

0

f 2Sh(f) df . (5.25)
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Thus the spectral density of the gravitational energy density is

ρGW =
1

32πG
⟨ḣijḣij⟩ =

π

2G

∫ f=∞

f=0

df

d log f
f 2Sh(f) d log f =

π

2G

∫ f=∞

f=0

f 3Sh(f) d log f ,

(5.26)

which implies the following relation for the spectral density

dρGW

d log f
=

π

2G
f 3Sh(f). (5.27)

The frequency-varying spectral density for the fractional energy density is then

ΩGW(f) =
1

ρc

dρGW

d log f
=

(2π)2

3H2
0

f 3Sh(f). (5.28)

It will be prudent to work with h20ΩGW(f) as a way to circumvent any potential

uncertainty. An alternative expression for the gravitational wave energy density is given

in terms of the number of gravitons per cell of phase space n(r,p) = nf which only

depends on the frequency. The frequency is related to the momentum by |p| = ω = 2πf

and the fact that it only depends on the magnitude and not direction is a consequence

of the isotropy condition we placed on the stochastic background. The energy density is

then

ρGW = 2

∫
d3p

(2π)3
Epnf = 2

∫
p2 dp dΩ

(2π)3
pnf , (5.29)

where the factor of 2 in front is for the two polarizations of the graviton and made

use of the dispersion relation for a massless particle. Plugging in the relation p = 2πf

we get

ρGW = 2 · 4π

(2π)3
· (2π)4

∫ ∞

0

f 2 · fnf df = (4π)2
∫ f=∞

f=0

d(log f) f 4nf . (5.30)

Thus the spectral density is then

dρGW

d log f
= (4πf 2)2nf ⇒ h20ΩGW (f) =

8πG

3

h20
H2

0

(4πf 2)2nf . (5.31)

It is common to express the covariance of the possible polarization states in terms of
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the Stokes Parameters1〈h∗+(f, p̂)h+(f ′, p̂′)
〉 〈

h∗+(f, p̂)h×(f
′, p̂′)

〉
〈
h∗×(f, p̂)h+(f

′, p̂′)
〉 〈

h∗×(f, p̂)h×(f
′, p̂′)

〉


=
1

2
δ(f − f ′)

δ(2)(p̂− p̂′)

4π

 I(f, p̂) +Q(f, p̂) U(f, p̂) + iV (f, p̂)

U(f, p̂)− iV (f, p̂) I(f, p̂)−Q(f, p̂)

 ,
(5.32)

where I = I(f) is the overall intensity related to spectral density of the signal by

I(f) = Sh(f), V is the circular polarization, and U,Q are quantities that describe the

horizontal/vertical (in the case of Q) and diagonal linear polarization states. We note

that I and V transform as scalar (and pseudo-scalar) under rotations whereas parameters

U,Q transform as spin-4 quantities under rotations. This presentation of the possible

polarization states is a generalization of the condition for the Stochastic Background we

originally wrote out. This can be seen by simply taking Q = U = V = 0 (which we

originally did so due to the isotropy condition).

5.1 Signal-to-Noise Ratio

A gravitational wave background acts as an additional source of noise i.e. a background

for a detector. One needs to model the noise inherent in the detector as well as all

potential sources of noise in order to get a certain value for the spectral density of the

noise Sn(f).

Once the detector has been turned on, we measure ⟨s2(t)⟩ where s(t) = h(t) + n(t)

with h(t) being the response of the detector due to the gravitational wave signal and n(t)

is the noise.

We need to impose some signal-to-noise (SNR) cutoff to establish when a detection

of the gravitational wave background is made. Given some S/N, we should compute the

minimum value of h20ΩGW that can be measured (since this is a dimensionless observable).

First, suppose there is no signal (h(t) = 0), the detector measures

1This is a concept that is borrowed from E&M where we use 4 parameters to describe all the possible
polarization states.
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⟨s2(t)⟩ = ⟨n2(t)⟩ =
∫ ∞

0

Sn(f) df . (5.33)

Now suppose there is some signal (h(t) ̸= 0). Now for every propagation direction p̂,

we can write h(t) = h+(t)F+(p̂)+h×(t)F×(p̂) where FA are the detector pattern functions

given by FA(p̂) = DijϵAij(p̂) and Dij is called the detector tensor. We break for a brief

interlude.

5.1.1 Pattern Functions

First we introduce the detector tensor. The detector tensorDij, is the tensor that projects

the relevant orientation of the gravitational wave according to the geometry of the de-

tector. As an example, if the detector is purely driven by the xx component of the

propagating wave then

Dij =

1 0

0 0


ij

. (5.34)

Because detectors can only receive scalar quantities as inputs and/or outputs, but

gravitational waves are described by a rank 2 tensor, it is important that we express our

mathematical tools in terms of things that can be measured. Now the pattern functions

FA(p̂) = DijeAij(p̂), are a set of functions where we project out angular dependence

of the polarization tensors. Given the propagation direction p̂, we can construct the

plane orthogonal to this direction using the axes û, v̂. An interesting property that we

can observe is what happens if we rotate these axes about the propagation direction.

Because these are vectors under rotation they transform as

û → û′ = û cosψ − v̂ sinψ, v̂ → v̂′ = û sinψ + v̂ cosψ. (5.35)

The amplitude for the polarizations h+, h× transform as

h′+ = h+ cos 2ψ − h× sin 2ψ, h′× = h+ sin 2ψ + h× cos 2ψ. (5.36)

Now we recall the definition of the polarization tensors in terms of these vectors by
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ϵ+ij = ûiûj − v̂iv̂j, ϵ×ij = ûiv̂j + v̂iûj. (5.37)

Under a rotation in the û, v̂ plane, these tensors transform as

(ϵ+ij(p̂))
′ = û′

iû
′
j − v̂′

iv̂
′
j (5.38)

= (ûi cosψ − v̂i sinψ)(ûj cosψ − v̂j sinψ)− (ûi sinψ + v̂i cosψ)(ûj sinψ + v̂j cosψ)

(5.39)

= ûiûj cos
2 ψ − ûiv̂j sinψ cosψ − v̂iûj sinψ cosψ + v̂iv̂j sin

2 ψ (5.40)

− (ûiûj sin
2 ψ + ûiv̂j sinψ cosψ + v̂iûj sinψ cosψ + v̂iv̂j cos

2 ψ)

= ûiûj(cos
2 ψ − sin2 ψ)− 2ûiv̂j sinψ cosψ − 2v̂iûj sinψ cosψ + v̂iv̂j(sin

2 ψ − cos2 ψ)

(5.41)

= ûiûj cos 2ψ − ûiv̂j sin 2ψ − v̂iûj sin 2ψ − v̂iv̂j cos 2ψ (5.42)

= (ûiûj − v̂iv̂j) cos 2ψ − (ûiv̂j + v̂iûj) sin 2ψ (5.43)

= ϵ+ij cos 2ψ − ϵ×ij sin 2ψ, (5.44)

(ϵ×ij(p̂))
′ = û′

iv̂
′
j + v̂′

iû
′
j (5.45)

= (ûi cosψ − v̂i sinψ)(ûj sinψ + v̂j cosψ) + (ûi sinψ + v̂i cosψ)(ûj cosψ − v̂j sinψ)

(5.46)

= ûiûj sinψ cosψ + ûiv̂j cos
2 ψ − v̂iûj sin

2 ψ − v̂iv̂j sinψ cosψ (5.47)

+ ûiûj sinψ cosψ − ûiv̂j sin
2 ψ + v̂iûj cos

2 ψ − v̂iv̂j sinψ cosψ

= 2ûiûj sinψ cosψ + ûiv̂j(cos
2 ψ − sin2 ψ)− 2v̂iûj sinψ cosψ + v̂iv̂j(sin

2 ψ − cos2 ψ)

(5.48)

= ûiûj sin 2ψ − ûiv̂j cos 2ψ − v̂iûj cos 2ψ − v̂iv̂j sin 2ψ (5.49)

= (ûiûj − v̂iv̂j) sin 2ψ − (ûiv̂j + v̂iûj) cos 2ψ (5.50)

= ϵ×ij cos 2ψ − ϵ+ij sin 2ψ, (5.51)

thus we have the interesting fact that the polarization tensors

(ϵ+ij)
′ = ϵ+ij cos 2ψ − ϵ×ij sin 2ψ, (ϵ×ij)

′ = ϵ×ij cos 2ψ + ϵ+ij sin 2ψ, (5.52)
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almost transform like vectors, the fact that they rotate twice as much likely being

a consequence of the spin of the graviton. We also notice that the polarization tensors

transform exactly the same as the polarization amplitudes. We next look at how the

pattern functions transform under a rotation in the orthogonal plane of propagation

F ′
A(p̂) = Dij(ϵAij)

′(p̂)

F ′
+(p̂) = F+(p̂) cos 2ψ − F×(p̂) sin 2ψ, F ′

× = F+ sin 2ψ + F× cos 2ψ, (5.53)

which follows directly from the transformation properties of the polarization tensors

and we used Dij to project out the corresponding polarization amplitude. As a result of

these definitions, the signal h(t) should be independent of this rotation

h′(t) = h′+F
′
+ + h′×F

′
× (5.54)

= (h+ cos 2ψ − h× sin 2ψ)(F+(p̂) cos 2ψ − F×(p̂) sin 2ψ) (5.55)

+ (h+ sin 2ψ + h× cos 2ψ)(F+ sin 2ψ + F× cos 2ψ)

= h+F+ cos2 2ψ + h×F× sin2 ψ + h×F× cos2 2ψ + h+F+ sin2 2ψ (5.56)

= h+F+ + h×F×, (5.57)

thus h′(t) = h(t) as we anticipated. We then define the new pattern functions

F+(p̂;ψ) ≡ F+(p̂) cos 2ψ−F× sin 2ψ, F×(p̂;ψ) ≡ F×(p̂) sin 2ψ+F+(p̂) cos 2ψ. (5.58)

We next have the following useful identity:∫
d2p̂

4π
F+(p̂)F×(p̂) =

∫
d2p̂

4π
(Dijϵ+ij(p̂))(D

kℓϵ×kℓ(p̂)) = DijDkℓ

∫
d2p̂

4π
(ûiûj − v̂iv̂j)(ûiv̂j + v̂iûj)

(5.59)

= DijDkℓ

∫
d2p̂

4π
(ûiûjûkv̂ℓ + ûiûjv̂kûℓ − v̂iv̂jûkv̂ℓ − v̂iv̂jv̂kûℓ),

(5.60)

and when we integrate over all possible angles/directions p̂, we notice that for every

vector û, there exist a vector with the same magnitude but opposite direction −û which
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cancels both contributions out. We next can derive some other properties for these

generalized pattern functions∫
dψ

2π
F 2
+(p̂;ψ) =

F 2
+

2π

∫ 2π

0

cos2 2ψ dψ +
F+F×

2π

∫ 2π

0

sin 4ψ dψ +
F 2
×

2π

∫ ∞

0

sin2 2ψ dψ

(5.61)

=
F 2
+

2π
· π
2
+
F 2
×

2π
· π
2
=

1

4

(
F 2
+ + F 2

×
)

(5.62)

=
F 2
+

2π

∫ 2π

0

sin2 2ψ dψ +
F+F×

2π

∫ 2π

0

sin 4ψ dψ +
F 2
×

2π

∫ ∞

0

cos2 2ψ dψ

(5.63)

=

∫
dψ

2π
F 2
×(p̂;ψ). (5.64)

We also have an identity involving the ensemble average over all possible angles

⟨F 2
+(p̂;ψ)⟩(θ,ϕ,ψ) =

∫ 2π

0

dψ

2π

∫
d2p̂

4π
F 2
+(p̂;ψ) =

∫
d2p̂

16π
(F 2

+(p̂)+F
2
×(p̂)) = ⟨F 2

×(p̂;ψ)⟩(θ,ϕ,ψ).

(5.65)

Lastly we define the angular efficiency F by

F ≡ ⟨F 2
+⟩+ ⟨F 2

×⟩ = 2⟨F 2
+⟩. (5.66)

The angular efficiency relates the response of the detector with the angular dependence

of the propagating wave.

5.2 SNR Analysis Continued

Now we can go back to the original discussion. The response of the detector due to a

gravitational wave impacting it is

h(t) = h+(t)F+(p̂)+h×(t)F×(p̂) ⇒ h2(t) = h2+(t)F
2
+(p̂)+2h+(t)h×(t)F+(p̂)F×(p̂)+h

2
×(t)F

2
×(p̂).

(5.67)

The time averaged ensemble is

⟨h2(t)⟩t = ⟨F 2
+h

2
+ + F 2

×h
2
× + 2F+F×h+h×⟩t. (5.68)

Next when we take the angular ensemble average we get
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∫
d2p̂

4π

∫
dψ

2π
⟨h2(t)⟩t =

∫
d2p̂

4π

∫
dψ

2π

(
F 2
+⟨h2+⟩t + F 2

×⟨h2×⟩t + 2F+F×⟨h+h×⟩t
)

(5.69)

=

∫
d2p̂

4π

∫
dψ

2π

(
F 2
+⟨h2+⟩t + F 2

×⟨h2×⟩t
)

(5.70)

=

∫
d2p̂

4π

∫
dψ

2π
F 2
+⟨h2+ + h2×⟩t, (5.71)

where we used the fact that the product of pattern functions belonging to different

polarizations vanishes over this ensemble average as well as the fact that the average over

all angles is the same for both pattern functions. Next we recognize that ⟨h2⟩t is isotropic

and thus has no dependence on the angles which means∫
d2p̂

4π

∫
dψ

2π
⟨h2(t)⟩t = ⟨h2(t)⟩t

∫
d2p̂

4π

∫
dψ

2π
= ⟨h2⟩t. (5.72)

We next can see that

hijhij = 2(h2++h
2
×) ⇒ ⟨hijhij⟩t = 2⟨h2++h2×⟩t = 4

∫ ∞

0

Sh(f) df ⇒ ⟨h2++h2×⟩t = 2

∫ ∞

0

Sh(f) df .

(5.73)

The equal-time correlation function for the signal is thus

⟨h2(t)⟩t =
∫

d2p̂

4π

∫
dψ

2π
F 2
+

(
2

∫ ∞

0

Sh(f) df

)
= 2⟨F 2

+⟩(θ,ϕ,ψ)
∫ ∞

0

Sh(f) df = F

∫ ∞

0

Sh(f) df .

(5.74)

As a result, the correlation function for the strain amplitude s(t) = h(t)+n(t) is thus

⟨s2(t)⟩t = ⟨h2(t)⟩t + 2⟨h(t)n(t)⟩t + ⟨n2(t)⟩t. (5.75)

The middle term can be ignored because given observation time T , the ensemble

average

1

T

∫ T

0

h(t)n(t) dt ∼
√
τ0
T
h0n0, (5.76)

where τ0 is a characteristic time, h0 is a characteristic amplitude for the signal h(t),

and n0 is a characteristic amplitude for the noise. It is evident that not only does this

term vanish for long time-spans, but we only need h0 >
√

τ0
T
n0 for our approximations.

Now the strain amplitude is
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⟨s2(t)⟩t = F

∫ ∞

0

Sh(f) df +

∫ ∞

0

Sn(f) df =

∫ ∞

0

[FSh(f) + Sn(f)] df . (5.77)

Thus the correlation function for the strain amplitude in the presence of the stochastic

background is slightly elevated than one would expect if the strain was due to pure noise.

This is how we’ll be able to detect the background. We can also make more direct

comparisons of the signal to noise in a particular bin. Discretizing the integral, we can

write ∫
Sh(f) df →

∑
i

Sh(fi)∆f,

∫
Sn(f) df →

∑
i

Sn(fi)∆f. (5.78)

Meaning the (square of the) signal-to-noise ratio in a particular frequency bin is(
S

N

)2

=
FSh(fi)∆f

Sn(fi)∆f
= F

Sh(fi)

Sn(fi)
. (5.79)

We can finally conclude that the minimum of Sh(f) that is measurable by a single

detector with a noise power spectrum Sn(f) at a given S/N level is

[Sh(f)]min = Sn(f)
(S/N)2

F
⇒ [ΩGW(f)]min =

4π2

3H2
0

f 3Sn(f)
(S/N)2

F
. (5.80)

We can make note of the following astounding fact: due to the form of the fractional

energy density for gravitational waves, when provided a particular noise level for Sn(f),

at low frequencies we are able to squeeze out a much better sensitivity in ΩGW relative

to the comparably tiny variations in the power spectrum for the noise. This can be seen

by the following: LISA will detect frequencies that go all the way down to f ∼ 10−3Hz

for a strain amplitude of S
1/2
n (f) ∼ 4× 10−21Hz−1/2. On the other hand a ground based

detector such as LIGO or VIRGO can detect strain amplitudes of 4 × 10−23Hz−1/2 at

much higher frequencies of f ∼ 102Hz. While this represents a drop off of

S
1/2
n,1G(f)

S
1/2
n,LISA(f)

∼ 102 ⇒ Sn,1G(f)

Sn,LISA(f)
∼ 104, (5.81)

so a relative loss of amplitude of 104Hz−1. Compare this to the cubic frequency in

the definition of ΩGW(f)
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(
fhigh
flow

)3

∼
(

102

10−3

)3

= 1015. (5.82)

Meaning it is much easier to reach a lower level for [ΩGW (f)]min at low frequencies

than it is for higher frequencies.

5.3 Anisotropies

Ultimately we are interested in studying anisotropies in the Stochastic Background. To

this end we define the object

ΩGW(f, p̂) =
1

ρc

∂2ρGW

∂(log f)∂p̂
, (5.83)

such that we have

ΩGW(f) =

∫
d2p̂

4π
ΩGW(f, p̂). (5.84)

From here, with a clear analogy to the CMB, we can define an overdensity field

δGW(f, p̂) =
ΩGW(f, p̂)− ΩGW(f)

ΩGW(f)
. (5.85)

Now the overdensity field can be decomposed into three distinct parts

δGW ≃ δsGW + δlosGW +Dp̂ · v̂, (5.86)

where δsGW is the anisotropy that is induced from the various astrophysical back-

grounds, δlosGW is an isotropy resulting from the accumulated line-of-sight effects, and Dp̂·v̂

is the dipole term with magnitude D induced by the peculiar velocity of the observer.

Now δsGW is the anisotropy that we shall constrain ourselves to because it accounts for

∼ 90% of the anisotropic signal. Assuming the overdensity field can also be characterized

by a Gaussian random field, then we only need to worry about the correlation function

CGW(f, cos θ) = ⟨δsGW(f, p̂)δsGW(f, p̂′)⟩, (5.87)

which can be expanded in terms of Legendre polynomials in the usual way
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CGW(f, cos θ) =
∞∑
ℓ=0

2ℓ+ 1

4π
Cδ
ℓ (f)Pℓ(cos θ). (5.88)

Inverting this equation to get the angular power spectrum gives us

Cδ
ℓ (f) = 2π

∫ 1

−1

CGW(f, cos θ)Pℓ(cos θ) d cos θ . (5.89)

Much like in the case of the CMB, the quantity ℓ(ℓ+1)Cℓ

2π
is measured and subsequently

plotted. This is essentially the contribution to the power spectrum per log bin to the

variance of δs which quantifies Cδ
ℓ .
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