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1 Preliminary Stuff

Before we start writing down the Feynman rules, there are some other rules/definitions

we need to know first. First, we define on-shell:

Definition 1.1 We say that a quantity is on shell when it satisfies some classical equa-

tions of motion. Otherwise, we say it is off shell.

For example, the Euler-Lagrange Equations gives on shell equations. While virtual

particles are off shell because they don’t satisfy the energy-momentum relation: E2 −

|p|2 = m2. We call this the mass shell. Next, we should define what a scattering amplitude

even is:

Definition 1.2 A scattering amplitude, A, for a Feynman diagram, Fn, encodes the

probability amplitude of one particle scattering off of another.

We leave a more detailed explanation of finding a scattering amplitude below. Here

we define renormalization.

Definition 1.3 A field is renormalizable when through the process of introducing counter-

terms into the Lagrangian, we prevent the path integral over all field configurations from

diverging (i.e. we ”tame” the infinities that is present within the theory). Otherwise
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we say that the field is non-renormalizable. By introducing counter-terms, we recog-

nize that we do not measure infinities in nature, and thus, every infinity must be swal-

lowed/absorbed into some parameter, while the other term must be what we find in exper-

iment.

The reason why we even talk about renormalization is because it helps in providing

us a complete quantum mechanical description of the universe. Speaking of which:

Definition 1.4 A (renormalizable) field theory is complete if its path integral is finite

for any arbitrary length/energy scale.

As an example, Quantum Chromodynamics (QCD) is considered complete for the

reason articulated above. While we’re at it, we should also define what an effective field

theory is:

Definition 1.5 A field theory is an effective field theory if its path integral is finite

only up to some arbitrary cut-off length/energy scale. Therefore, it is an effective de-

scription of the underlying quantum phenomenon. Typically, for a theory to only be an

effective description, it is non-renormalizable.

For example, because General Relativity (GR) is non-renormalizable (requires an infi-

nite number of counter-terms to tame the infinities), any quantization done on Einstein’s

equations would be an effective field theory description. Lastly, we have the rule that

every delta function that gets written down, must also have a factor of 2π and every

measure element (dq) gets a factor of 1/2π. So for the 4-d delta function and 4-d volume

element we write

(2π)4δ4(x),
d4q

(2π)4
.
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2 Neutral Massive Scalar Field Rules

Here we write down the Feynman rules for computing the scattering amplitudeA from the

Lagrangian. Say we have a generic scalar field ϕ, and we wish to compute its amplitude.

ϕ1

ϕ2

ϕ3

pi

pj

pk

1. Diagram Order: Before we start computing amplitudes, we must decide to which

order we may wish to look at. Since the above diagram has three lines, we’ll focus on

computing cubic order fields (since this is the lowest order Feynman diagram, F3, one

can have). That being said, everything that we state for a three-point diagram can be

easily generalized to an n-point diagram.

L3 = − λ

3!
ϕ3, L3 = − λ

3!
ϕ(∂ϕ)2, L3 =

1

Λ3
(∂ϕ)2□ϕ.

2. Differentiate: Once we decide what order we may wish to compute the dia-

grams, now we can actually get down to business. Our next rule is that we differentiate

the Lagrangian L with respect to ϕ. The number of times we take differentiate w.r.t. ϕ

corresponds to the order of the desired diagram. So if we want a three line diagram such

as the one above, then we need to differentiate with respect to ϕ three times.

3. Momentum: When differentiating, we might have a term that includes deriva-

tives of ϕ, say (∂ϕ)2. The way we go about dealing with terms like this is simply dif-

ferentiating as we would normally do, but replace the derivative with a corresponding

momentum i.e. (∂ϕ)2 → 2pµ∂
µϕ. If one encounters a d’Alembert operator then the rule

is □ → pµp
µ. However, this can only be done when our scalar field respect Lorentz sym-

metry. If it doesn’t then the rules are slightly different. For every time derivative that

exists, replace it with the energy of the field so d
dt

→ −iE and for every spatial derivative,
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replace it with the spatial momentum ∇ → −ip.

4. Notation: Clearly label the incoming and outgoing momenta after you’ve re-

placed the derivatives in favor of the aforementioned momenta. The first two derivatives

correspond to the momenta of the incoming external lines that are connected at the ver-

tex we’re looking at. The next one or two correspond to the momenta of the outgoing

external lines that are attached to the vertex of interest. It could be helpful to the au-

dience to label them with Latin indices, so we don’t confuse ourselves with what we call

particle 1 (with momentum p1) and with what we refer to as the momentum of the first

external incoming line.

5. Vertex Rule: Once we’ve differentiated to the point where we eliminated all ϕ’s

of the order we wish to compute our diagrams to, whatever constant is leftover will be

what we write down for every vertex. This is what we will call the coupling constant.

Once we have this factor, its merely a matter of looking at the diagram and plugging in

the appropriate momenta into the correct placement within the vertex rule.
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3 Diagram Rules

Now, we shall follow the lead of Griffiths and write down the Feynman Rules for a toy

model of spin-0 massive particles with the following interaction: A → B + C. And of

course, these are the rules for the lowest order (i.e. tree) F3 for a scattering amplitude

A, with the Lagrangian L and defining α ≡ δ
δϕ

δ
δϕ

δL
δϕ
.

A

B

C

1. Notation: Label the incoming and outgoing 4-momenta as p1, p2, . . . , pn. Label

the internal momenta as q1, q2, . . . Put an arrow beside each line to keep track of the

’positive’ direction.

2. Vertex Factors: For each vertex, write down a factor

iα,

where i =
√
−1 and α is the factor that was found from above; it specifies the strength

of the interaction between A, B, and C. In this toy theory, g has dimensions of momentum

however, typically coupling constants are dimensionless.

3. Propagators: Each internal line gets a factor of

i

q2j −m2
j

,

where qj and mj is the 4-momentum and mass-squared of the j-th particle the internal

line describes. (Note that qj ̸= mj because a virtual particle doesn’t lie on its mass shell.)

4. Conservation of Energy/Momentum: Each vertex gets a delta function in the
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form of

(2π)4δ4(k1 + k2 + k3),

where the k’s are the three four momenta coming into the vertex (−ki for outgoing

momenta). This factor imposes conservation of energy/momentum at each vertex, since

the delta function is zero unless the sum of the incoming momenta equals the sum of the

outgoing momenta.

5. Integration Over Internal Momenta: For each internal line, write down a factor

d4qj
(2π)4

.

and integrate over all internal momenta.

6. Cancel the Delta Function: The result will include a delta function

(2π)4δ4(p1 + p2 + . . .− pn),

reflecting overall conservation of energy/momentum. Erase this factor and multiply

by i. The result is A for that diagram. If there are more than one diagram to compute

an amplitude for, then the total amplitude is the sum of all the little amplitudes, i.e. for

n = 3, F3, the final amplitude is

Atot =
3∑

i=1

Ai.
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4 Spin-s Feynman Rules

Now that we have the Feynman rules for a generic neutral massive scalar field, we are

ready to write them down for more general fields of spin-s ∈ {0, 1
2
, 1}. Proceed with the

following:

(1) Draw the different Feynman Diagrams: relabeling x↔ y cancels 1
2!

(2) For each incoming fermion line: b̂→ u and for each outgoing fermion line b̂† → ū.

For incoming anti-fermions d̂ → v̄ and for outgoing anti-fermions d̂† → v. Arrange the

spinors in order (ū, v̄)γ(u, v) from ψγµψ.

(3) Conserve energy/momentum at each vertex: the transfer momentum to an internal

propagator is pin − pout ⇒ total E/p conserved.

(4) In-out photons (”on-shell”) ⇒ ϵµ = (0, ϵ̂).

(5) Internal scalar propagator:

i

k2 − µ2 + iϵ
,

Internal photon propagator:

−iηµν
k2 + iϵ

,

Internal MVB propagator:

−i
(
ηµν − kµkν

M2

)
k2 −M2 + iϵ

,

Internal fermion propagator:

i(/k +m)

k2 −m2 + iϵ
,

(6) ”Swapping” external bosonic lines ⇒ relative (+) sign and swapping external

fermion lines ⇒ relative (-) sign (from anti-commutators)

(7) In-out particles obey free-field dispersion relations ”on-shell” k2 =M2
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