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Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ε0 = µ0 = 1. The d’Alembert and Laplace operators are defined to be

□ ≡ ∂µ∂
µ = −∂2

t +∇2 and ∇2 = ∂i∂
i respectively. We use boldface letters r to indicate

3-vectors and x and p to denote 4-vectors.

Here we gather all of the field theoretic work on E&M. This document is organized

as follows: first we count the degrees of freedom of massless E&M, then massive E&M

(also known as Proca theory), then we derive the force law for both Lagrangians.

1 Massless Degrees of Freedom

We first start with the Lagrangian for electromagnetism in flat space

L = −1

4
FµνF

µν , (1.1)

where Fµν is the field strength tensor for electromagnetism and F µν = ηµαηνβFαβ.

Next we write Fµν in terms of the 4-potential

Fµν = ∂µAν − ∂νAµ, (1.2)

where Aµ is the 4-potential with µ = 0, . . . , 3. Now we express the Lagrangian purely

in terms of the 4-potential
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L = −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) (1.3)

= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ. (1.4)

We can simplify this expression further by first writing the 4-potential in terms of its

constituent field components, the electric and magnetic potential

Aµ = (A0, Ai), (1.5)

where A0 is the electric potential and Ai is the magnetic potential. Next we can

perform a 3+1 decomposition to the Lagrangian and get the following expression

L =
1

2
(∂0Ai − ∂iA0)(∂0A

i − ∂iA0)−
1

2
∂iAj(∂

iAj − ∂jAi) (1.6)

=
1

2
(∂0Ai − ∂iA0)

2 − 1

2
∂iAj(∂

iAj − ∂jAi). (1.7)

We are now ready to plug this Lagrangian into the action, S. This yields

S =

∫
1

2
(∂0Ai − ∂iA0)

2 − 1

2
∂iAj(∂

iAj − ∂jAi) d4x , (1.8)

where we’re integrating over 3-spatial dimensions and one time dimension. Next we

integrate by parts on the second term to get the following

S =

∫
1

2
(∂0Ai − ∂iA0)

2 +
1

2
Aj(∇2Aj − ∂j∂iA

i) d4x , (1.9)

where we implicitly assume that Aj goes to zero at infinity. To simplify things even

further, we make use of a theorem from linear algebra, where we can write any vector

field as a longitudinal and transverse part

Ai = AT
i + ∂iα, ∂iAT

i = 0. (1.10)

Replacing the Ai with it’s Helmholtz decomposition in our action gives us

S =

∫
1

2
(ȦT

i + ∂iα̇− ∂iA0)
2 +

1

2
AT

i ∇2Ai
T +

1

2
∂iα∇2Ai

T d4x . (1.11)

2



Using integration by parts on the last term while assuming that the scalar function

α goes to zero at infinity, we find that the last term is identically zero. This brings our

action to take the form

S =

∫
1

2
(ȦT

i + ∂iα̇− ∂iA0)
2 +

1

2
AT

i ∇2Ai
T d4x . (1.12)

Now we are ready to count the degrees of freedom for flat space E+M. First we note

the following gauge transformation law

Aµ → Aµ + ∂µΛ. (1.13)

This implies that

A0 → A0 + Λ̇, AT
i → AT

i , α → Λ. (1.14)

Looking at the action, we can conclude that A0 is an auxiliary field. And thus, we

can eliminate it using the equations of motion we derived in the previous expression.

δL
δA0

= ∇2(α̇− A0) = 0 ⇒ A0 = α̇. (1.15)

The last step we justify by invoking the fact that the kernel of a linear operator is

just the zero vector. With this fact in mind, our action reduces down to

S =
1

2

∫
AT

i □Ai
T d4x . (1.16)

From here it is obvious to see that the action under this Lagrangian has only two

degrees of freedom as opposed to the 4 by introducing the 4-potential. The condition

that ∂iA
i
T = 0 constrains the action to at most 3 degrees of freedom. However, by

choosing the gauge δAµ = ∂µΛ and eliminating the pure gauge part α, we reduced the

degrees of freedom to just two.

2 Massive Degrees of Freedom

We start with the Lagrangian for massive electromagnetism in flat space
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L = −1

4
FµνF

µν − 1

2
m2AµA

µ, (2.1)

where Fµν is the electromagnetic field strength tensor, F µν = ηµαηνβFαβ, m is the mass

of the photon, and Aµ is the 4-potential. Next we write Fµν in terms of the 4-potential

Fµν = ∂µAν − ∂νAµ. (2.2)

Next we write the 4-potential as

Aµ = (A0, Ai). (2.3)

And now from the massless photon calculation, we can jump straight to the La-

grangian

L =
1

2
(∂0Ai − ∂iA0)

2 − 1

2
∂iAj(∂

iAj − ∂jAi)− 1

2
m2A0A

0 − 1

2
m2AiA

i. (2.4)

Plugging the Lagrangian into the action S gives us

S =

∫
1

2
(∂0Ai − ∂iA0)

2 − 1

2
∂iAj(∂

iAj − ∂jAi)− 1

2
m2A0A

0 − 1

2
m2AiA

i d4x . (2.5)

Taking advantage of the result we calculated in the case of the massless photon while

integrating certain terms out we get

S =

∫
1

2
(ȦT

i + ∂iα̇− ∂iA0)
2 +

1

2
Ai

T∇2AT
i +

1

2
m2A2

0 −
1

2
m2(AT

i + ∂iα)
2 d4x . (2.6)

From (6) we observe that there are no Ȧ terms and thus we conclude A0 is an auxiliary

field. Meaning we can use it’s equations of motions to eliminate it from the action. With

this in mind, we’re prepared to plug in the Lagrangian into the Euler-Lagrange equation

δL
δA0

= ∇2(α̇− A0)−m2A0 = 0 ⇒ A0 = Dα̇, D ≡ ∇2

∇2 +m2
. (2.7)

Plugging this equation into the action gives us

S =
1

2

∫ [
Ai

T (□−m2)AT
i − (α̇∇2 +∇2α̇D + α̇∇2D)α̇−m2(Dα̇)2 −m2∂iα∂

iα
]
d4x .

(2.8)
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From here we can no longer identify anymore auxiliary fields and thus we conclude

that for massive E&M, the 4-potential carries 3 degrees of freedom: two for AT
i and one

for α.

3 Coulomb’s Law

We first start with the Lagrangian for electromagnetism in flat space coupled with a

source

L = −1

4
F µνFµν + jµAµ, Fµν = ∂µAν − ∂νAµ, (3.1)

where Fµν is the field strength tensor for E&M, Aµ is the 4-potential, and jµ is the

source current. And we are subject to the constraint that ∂µj
µ = 0. We can simplify this

expression by breaking it down into the constituent components of the 4-potential and

the source current by

Aµ = (A0, Ai), jµ = (ρ, ji), (3.2)

where ρ and ji are the charge and current density respectively. Combining the previous

two expressions gets us

L =
1

2
(∂0Ai − ∂iA0)

2 − 1

2
∂iAj(∂

iAj − ∂jAi) + ρA0 + jiAi. (3.3)

From Helmholtz Theorem, we know we can write any 3-vector as the sum of a curl-less

and divergence-less part. So we can write

Ai = AT
i + ∂iα, ji = jTi + ∂iγ, (3.4)

where

∂iAT
i = ∂ijTi = 0. (3.5)

Putting the previous expression into the action while taking advantage of the 3-

potential and vector current’s decomposition yields
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S =

∫
1

2
(ȦT

i + ∂iα̇− ∂iA0)
2 +

1

2
Ai

T∇2AT
i + ρA0 + jiTA

T
i + ∂iγ∂

iα d4x . (3.6)

Since our source, jµ, is conserved the constraint equation becomes

ρ̇+∇2γ = 0 ⇒ γ = − 1

∇2
ρ̇. (3.7)

Next we must eliminate all of the redundant fields within the Lagrangian. Since A0

has no time derivatives, it is thus an auxiliary field and we can eliminate it using it’s

EOM. We get

δL
δA0

= ρ+∇2(α̇− A0) = 0 ⇒ A0 = α̇ +
1

∇2
ρ. (3.8)

With the equation of motion in mind, the action reads

S =

∫
1

2
Ai

T□AT
i + jiTA

T
i +

1

2

(
1

∇2
∂iρ

)2

+ ρα̇ + ρ
1

∇2
ρ− α∇2γ d4x , (3.9)

where we’ve integrated by parts on the first and last term. Once we plug in the

equation of motion into the action we get

S =

∫
1

2
Ai

T□AT
i + jiTA

T
i +

1

2
ρ
1

∇2
ρ d4x . (3.10)

We are now ready to derive the force law of E and M. First we notice that the last

term is the total electrostatic potential energy density. To get the force law, our best bet

is through this piece. So we first write

UE =

∫
1

2
ρ
1

∇2
ρ d3x (3.11)

=
1

2

∫
ρ(t,x)

∫
eip·x

p2
ρ(t,p) d3p d3x , (3.12)

Next we note that

ρ(t,p) =

∫
e−ip·xρ(t,x) d3x , (3.13)

which causes the expression in (3.12) to become
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UE =
1

2

∫ ∫ ∫
eip·(x−x′)

p2
ρ(t,x)ρ(t,x′) d3p d3x′ d3x . (3.14)

Using the formula

1

(2π)3

∫
eip·(x−x′)

p2
d3p =

1

4π

1

|x− x′|
, (3.15)

expression (14) becomes

UE =
1

8π

∫ ∫
ρ(t,x)ρ(t,x′)

|x− x′|
d3x′ d3x . (3.16)

Next we can consider this charge density as describing the electrostatic interactions

of two point charges as such

ρ(t,x) = Qδ3(x) + qδ3(x− r). (3.17)

Plugging this into the expression for UE gives

UE =
1

4π

∫ ∫
(Qqδ3(x)δ3(x′ − r))

|x− x′|
d3x′ d3x+

1

4π

∫ ∫
(Q2δ3(x)δ3(x′))

|x− x′|
d3x′ d3x

+
1

4π

∫ ∫
(q2δ3(x− r)δ3(x′ − r))

|x− x′|
d3x′ d3x .

(3.18)

If UE represents the total energy of the system, then the last two terms would be the

energy that the point charges gain when they interact with themselves. Since we only

really care about what’s going on between these two charges, we can omit these two terms

in favor of the very first term. Once we carry out the integral for the very first term, we

get

UE,int =
Qq

4π

1

r
. (3.19)

Differentiating with respect to r gives us the force

F =
Qq

4π

r̂

r2
. (3.20)
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