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Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and units

where c = ℏ = 1. The reduced four dimensional Planck mass is MP = 1√
8πG

≈ 2.43×1018

GeV. The d’Alembert and Laplace operators are defined to be □ = ∂µ∂
µ and ∇2 = ∂i∂

i

respectively. We use boldface letters x to indicate 3-vectors and we use x and p to denote

4-vectors. Conventions for the curvature tensors, covariant and Lie derivatives are all

taken from Carroll [1].

We are interested in formulating General Relativity in terms of a coordinate free basis.

We do this with the hope of eventually working up to the Kodoma State which is written

in terms of the coordinate-free action. We start off with a tangent space at a point p on

a manifold M , TpM. In differential geometry, we typically take our basis vectors to be

partial derivatives. As a result, we pick for a basis for TpM to be given by the partial

derivatives with respect to the coordinates at that point ê(µ) ≡ ∂µ. Because the basis

vectors for co-vectors are one forms, a basis for the cotangent space T ∗
pM is given by the

gradients of the coordinate functions, θ̂(µ) = dxµ.

Let us imagine that at each point in the manifold we introduce a set of basis vectors ê(a)

(we shall restrict ourselves to reference these coordinates with Latin indices as opposed to

Greek indices which will denote coordinates). Let these basis vectors be ”orthonormal”.

That is to say, if the canonical form of the metric is written ηab, we demand that the

inner product of our basis vectors (i.e. the metric) be

g(ê(a), ê(b)) = ηab. (1)
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We refer to the {ê(a), ê(b)} as the tetrad, or vielbein basis. We can express our old

basis vectors ê(µ) = ∂µ in terms of the new ones:

ê(µ) = e a
µ ê(a), (2)

e a
µ is an n×n invertible matrix (we’ll call e a

µ the vielbeins/tetrads) eµa is the inverse

so

eµae
a

ν = δµν , e a
µ eµb = δab ⇒ ê(a) = eµaê(µ). (3)

Let’s justify the second equality from the fact that eµae
a

ν = δµν

(
ê(µ) = e a

µ ê(a)
)
eµb ⇒ eµbê(µ) = eµbe

a
µ ê(a) (4)

= δab ê(a) (5)

= ê(b). (6)

We can see that

g(ê(a), ê(b)) = g(eµaê(µ), e
ν
bê(ν)) (7)

= eµae
ν
bg(ê(µ), ê(ν)) (8)

= eµae
ν
bg(∂µ, ∂ν) (9)

= gµνe
µ
ae

ν
b, (10)

where in the second equality we made use of the fact that the metric is a bi-linear

operator and hence T (kv) = kT (v) ∀ k ∈ F and v ∈ M , and the last equality is the defi-

nition of the components of the metric tensor in the coordinate basis. We can construct

an orthonormal basis of one-forms in TpM , which we denote θ̂(a). They may be chosen

to be compatible with the basis vectors, in the sense that

θ̂(µ) = eµaθ̂
(a). (11)

The orthonormality condition between the different basis vectors is
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θ̂(a)(ê(b)) = θ̂(a)(eµbê(µ)) (12)

= eµbθ̂
(a)(ê(µ)) (13)

= eµbe
a

ν θ̂(ν)(ê(µ)) (14)

= eµbe
a

µ (15)

= δab , (16)

where we used the relation

θ̂(ν)(ê(µ)) = dxν (∂µ) = δνµ. (17)

From all of the relations we’ve derived, we can express any arbitrary vector V ∈ M

V = V µ∂µ = V µê(µ) = V µe a
µ ê(a) ≡ V aê(a), (18)

so the tetrad e a
µ can be identified as a change of basis matrix and allows us to switch

between Latin indices (the tetrad basis) to Greek indices (the coordinate basis). We also

see for a tensor that the vielbeins gives us

V a
b = e a

µ V µ
b = e a

µ eνbV
µ
ν . (19)

Apparently, it is also common to refer to the Greek indices as ”curved” and the Latin

indices as ”flat”, so we will also make use of that same language from time to time1.

From everything we’ve learned so far, we can also write the inverse vielbeins in terms of

the metric on spacetime as well as the Minkowski metric on the tangent space via the

following:

gµνe
µ
ae

ν
be

a
λ e b

ρ = ηabe
a

λ e b
ρ (20)

gλρ = ηabe
a

λ e b
ρ (21)

⇒ eλcgλρ = ηabe
a

λ e b
ρ e

λ
c (22)

⇒ eλcgλρ = ηbce
b

ρ (23)

⇒ gλρe
λ
cη

cd = δdb e
b
ρ, (24)

1When in Rome, do as the Romans do.
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so we have

e a
µ = gµνe

ν
bη

ab, eµa = gµνe b
ν ηab. (25)

We have introduced the vielbeins e a
µ as components of a set of basis vectors, evaluated

in a different basis. This is equivalent to thinking of the as the components of a (1, 1)

tensor, e = e a
µ dxµ ê(a). But this is a tensor we already know and love: the identity map.

ê(a) → ê(a′) = Λa
a′ ê(a)(x), (26)

the Λ(x)’s are the only transformation rule that preserves the flat metric (with a

Lorentzian signature) at each point:

ηa′b′ = Λa
a′Λ

b
b′ηab. (27)

These transformations are therefore called local Lorentz transformations (LLTs). We

also have the choice to alter our coordinates, which we’ll call the general coordinate

transformations (GCTs)

T a′µ′

b′ν′ = Λa
a′
∂xµ′

∂xµ
Λb

b′
∂xν

∂xν′
ηabT

aµ
bν . (28)

Now let’s compute the changes in the covariant derivative. Let ω a
µ b be the spin

connection and X ∈ M be some vector in the manifold. We have

∇X ≡ (∇µX
ν) dxµ ⊗ ∂ν = (∂µX

ν + Γν
µλX

λ) dxµ ⊗ ∂ν . (29)

Next we find the same object in the mixed basis and then convert to the coordinate

basis
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∇X = (∇µX
a) dxµ ⊗ ê(a) =

(
∂µX

a + ω a
µ bX

b
)
dxµ ⊗ ê(a) (30)

=
(
∂µ(X

νe a
ν ) + ω a

µ bX
b
)
dxµ ⊗ ê(a) (31)

=
[
e a
ν ∂µX

ν +Xν∂µe
a

ν + ω a
µ bX

b
]
dxµ ⊗ eλaê(λ) (32)

=
[
∂µX

λ + eλaX
ν∂µe

a
ν + ω a

µ be
λ
ae

b
ρ X

ρ
]
dxµ ⊗ ∂λ (33)

=
[
∂µX

ν + eνaX
λ∂µe

a
λ + ω a

µ be
ν
ae

b
λ Xλ

]
dxµ ⊗ ∂ν = (∂µX

ν + Γν
µλX

λ) dxµ ⊗ ∂ν .

(34)

Thus, we can express the Christoffel symbols in terms of the tetrads and spin connec-

tion as

Γν
µλ = eνa∂µe

a
λ + eνae

b
λ ω a

µ b. (35)

Lets solve for the spin connection by applying the inverse vielbeins e c
ν eλd on the above

equation to get

ω c
µ d = e c

ν eλdΓ
ν
µλ − eλd∂µe

c
λ , (36)

and similarly the derivative of the tetrad can be shown to be

∂µe
a

ν − e a
λ Γλ

µν + e b
ν ω a

µ b = 0. (37)

The last equation can be recast as a constraint equation for the covariant derivative

on the tetrad:

∇µe
a

ν = ∂µe
a

ν − Γλ
µνe

a
λ + ω a

µ be
b

ν = 0. (38)

This condition is called the tetrad postulate, or the absolute parallelism condition.

Since both the Christoffel symbols as well as the spin connection are arbitrary, this

equation is true regardless of the spin or Levi-Civita connection we use. Let us direct our

attention toward the spin connection.

We’ve discussed how the tetrads and a general tensor transforms under GCTs and

LLTs, but we have yet to discuss how the spin connection transforms. It is obvious
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to see that the spin connection will transform as a one form in its curved index (i.e.

ω a
µ′ b = ∂xµ

∂xµ′ ω
a

µ b this justifies us referring to the spin connection as a connection one-

form), but how does it transform in its flat indices? The spin connection, like all gauge

fields, transforms like

ω a′

µ′ b′ = ω a
µ bΛ

a′

aΛ
b
b′ − Λc

b′∂µΛ
a′

c. (39)

We have previously said that we can think of objects likeX a
µ as mixed (1,1) tensors. It

can also be useful to think of these objects as Lie algebra-, or vector -valued objects (takes

in vectors/elements in the Lie algebra as its inputs and spits out scalars as its output).

This interpretation lends us to think about acting the exterior derivative d (because these

derivatives are defined for general p-forms) on X a
µ to get Lie algebra-valued two-forms

(dX)aµν = ∂µX
a

ν − ∂νX
a

µ . (40)

Because X a
µ can already be thought of as a one form, acting the exterior derivative

sends it to the space of two forms and it will transform appropriately. However, there

is more work to be done on its flat indices. Since the transformation matrix will, in

general, depend on the local coordinates which induces an inhomogeneous term in the

transformation rule. With that in mind and our knowledge of how the spin connection

transforms, we can formally introduce the covariant derivative on the internal flat space:

(DX)aµν = (dX)aµν + (ω ∧X)aµν (41)

= ∂µX
a

ν − ∂νX
a

µ + ω a
µ bX

b
ν − ω a

ν bX
b

µ . (42)

This formalism provides us with the opportunity to write down all of our quantities

with the curved indices suppressed (which should make for a much less cumbersome

notation!), providing us with very eloquent definitions for the torsion and curvature

tensors. Writing

ea ≡ e a
µ dxµ , ωa

b ≡ ω a
µ b dx

µ , (43)

we can define
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T a ≡ Dea = dea + ωa
b ∧ eb, Ra

b ≡ Dωa
b = dωa

b + ωa
c ∧ ωc

b. (44)

These constructions are called the Cartan structure equations. We can show that this

new definition of the torsion tensor is equivalent to the one given in GR by noticing

Γλ
µν = eλa∂µe

a
ν + eλae

b
ν ω a

µ b, (45)

Γλ
µν − Γλ

νµ = eλa∂µe
a

ν − eλa∂νe
a

µ + eλae
b

ν ω a
µ b − eλae

b
µ ω a

ν b (46)

= eλa(∂µe
a

ν − ∂νe
a

µ + e b
ν ω a

µ b − e b
µ ω a

ν b) (47)

= eλaT
a

µν = T λ
µν . (48)

Our definitions for the torsion and curvature can be put to some good use. For

example, we can see that

DDV a = D(dV a) +D(ωa
b ∧ V b) (49)

= ωa
b ∧ dV b + d(ωa

b ∧ V b) + ωa
c ∧ ωc

b ∧ V b (50)

= (dωa
b + ωa

c ∧ ωc
b) ∧ V b = Ra

b ∧ V b, (51)

where we used the conditions d(dV a) = 0 and d(αp ∧ βq) = dαp ∧ βq +(−1)pαp ∧ dβq,

where αp is a p-form and βq is a q-form. When we parallel transport these geometric

objects through the internal flat space, we find

DT a = dT a + ωa
b ∧ T b = d

(
dea + ωa

b ∧ eb
)
+ ωa

b ∧ (deb + ωb
c ∧ ec) (52)

= dωa
b ∧ eb + dωa

b ∧ ωa
c ∧ eb = Ra

b ∧ eb, (53)

and

DRa
b = dRa

b + ωa
c ∧Rc

b −Ra
c ∧ ωc

b (54)

= dωa
c ∧ ωc

b − ωa
c ∧ dωc

b + ωa
c ∧Rc

b −Ra
c ∧ ωc

d (55)

= ωa
c ∧ ωc

d ∧ ωd
b + ωa

d ∧ ωd
c ∧ ωc

b (56)

= 0. (57)
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These last two relations are generalizations of the first and second Bianchi identities:

Rαβµν +Rαµνβ +Rανβµ = 0, (58)

∇λRαβµν +∇µRαβνλ +∇νRαβλµ = 0, (59)

respectively. Lastly, we enforce a metric compatibility to our covariant derivative on

the Minkowski metric:

Dµηab = −ω c
µ aηcb − ω c

µ bηac (60)

= −ωµba − ωµab (61)

= 0 ⇒ ωµba = −ωµab. (62)

We are ready to throw these objects into the coordinate-free Palantini action

SP [e, ω] =
1

2κ2

∫
M

1

2
ϵabcde

a ∧ eb ∧Rcd, (63)

where ϵabcd are the components of the totally anti-symmetric Levi-Civita symbol and

ϵ0123 = −ϵ0123 = 1 and κ2 = 8πG. Now we can vary the action with respect to our

dynamical fields ea and ωa
b. First we try the spin connection:

δωSP =
1

2κ2

∫
M

1

2
ϵabcde

a ∧ eb ∧ δωR
cd. (64)

Since our dynamics for the spin connection only enter through the curvature two-form,

let us compute its variation with respect to the connection

δωR
cd = dδωcd + δωc

f ∧ ωfd + ωc
f ∧ δωfd (65)

= dδωcd + ωd
f ∧ δωcf + ωc

f ∧ δωfd (66)

= Dδωcd. (67)

When we put this term back into the action, after an integration by parts, we get

δωSP = − 1

2κ2

∫
M

1

2
ϵabcd

[
D
(
ea ∧ eb

)]
∧ δωcd. (68)
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Using the anti-symmetrization properties of the wedge product and the Levi-Civita

symbol, we get

δωSP = − 1

2κ2

∫
M

ϵabcdDea ∧ eb ∧ δωcd =
1

2κ2

∫
M

ϵabcdT
a ∧ eb ∧ δωcd. (69)

And when we set the functional derivative equal to zero, we get

δSP

δωcd
= ϵabcdT

a ∧ eb = 0. (70)

Since this equation has to be true for all a, b, c, d and the vielbeins can’t be zero since

they are invertible, this forces us to the conclusion that

T a = Dea = 0 ⇒ Dµe
a

ν −Dνe
a

µ = 0. (71)

So we get a torsion free condition just based off of the equations of motion for the spin

connection. We can take this constraint a step further by writing the covariant derivative

in terms of said connection

Dµe
a

ν = ∇µe
a

ν + ω a
µ be

b
ν = 0 (72)

⇒ ω a
µ b[e] = −eνb∇µe

a
ν , (73)

which implies that the spin connection is not a dynamical field since we’ve been able to

eliminate it using its own equations of motion. And now the tetrad equations of motion:

δeSP [e, ω] =
1

2κ2

∫
M

1

2
ϵabcd

(
δea ∧ eb ∧Rcd + ea ∧ δeb ∧Rcd

)
(74)

=
1

2κ2

∫
M

ϵabcdδe
a ∧ eb ∧Rcd, (75)

where we used the anti-symmetrization properties of the Levi-Civita symbol and the

wedge product yet again. Setting the variation equal to zero gives us

δSP

δea
= ϵabcde

b ∧Rcd = 0. (76)

Expressing this equation in the coordinate basis gives us
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ϵabcde
b

ν Rcd
λρϵ

µνλρ = 0. (77)

Inserting the completeness relation for the tetrads gives us

0 = ϵa′bc′d′e
a′

α e b
ν e c′

γ e d′

δ eαae
γ
ce

δ
dR

cd
λρϵ

µνλρ (78)

= eϵανγδϵ
µνλρeαae

γ
ce

δ
dR

cd
λρ, (79)

where e = det
(
e a
µ

)
. Now we use

ϵανγδϵ
µνλρ = δµαδ

λ
γδ

ρ
δ + δραδ

µ
γ δ

λ
δ + δλαδ

ρ
γδ

µ
δ − δµαδ

λ
δ δ

ρ
γ − δραδ

µ
δ δ

λ
γ − δλαδ

ρ
δδ

µ
γ , (80)

which turns the equation of motion (after making use of the anti-symmetrization

properties of the curvature 2-form) brings us

−4e

(
eρae

µ
ce

λ
d +

1

2
eµae

λ
ce

ρ
d

)
Rcd

λρ = 0. (81)

Next we recognize Rcd
λρ = e c

α e d
β Rαβ

λρ and

det(gµν) = det
(
ηabe

a
µ e b

ν

)
(82)

= det(ηab)(det
(
e a
µ

)
)2 (83)

= −e2, (84)

implying e =
√
−g. Plugging these relations into the equation of motion gives us

√
−g

(
eρaR

µλ
λρ +

1

2
eµaR

λρ
λρ

)
= 0. (85)

Recognizing that the first term is −Rµ
ρ and the second term is exactly the Ricci scalar

R, acting the tetrad eνa on the equation while simply the expression to

√
−g

(
Rµν −

1

2
gµνR

)
= 0, (86)

where in the last line we used

gµν = eµaeνa = ηabe
µaeνb. (87)
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Appendices

A Scalar Coupling

Lets see what happens if we were to couple the original Palantini action with some scalar

field ϕ(x)

SP [e, ω, ϕ] =
1

2κ2

∫
M

1

2
ϵabcdϕe

a ∧ eb ∧Rcd. (A.1)

Next we’ll vary the action with respect to the spin connection

δωSP =
1

2κ2

∫
M

1

2
ϵabcdϕe

a ∧ eb ∧ δωR
cd (A.2)

=
1

2κ2

∫
M

ϵabcd

(
ϕT a ∧ eb +

1

2
(Dϕ)ea ∧ eb

)
∧ δωcd. (A.3)

Setting the variation equal to zero gives us

δSP

δωcd
= ϵabcd

(
ϕT a +

1

2
(Dϕ)ea

)
∧ eb = 0 ⇒ T a = −1

2
(D lnϕ)ea. (A.4)

Interestingly, the scalar coupling induces a non-zero torsion on the action. Remem-

bering that the torsion is given by the covariant derivative of the tetrad field, we get

Dea = −1

2
(D lnϕ)ea, (A.5)

which reduces finding the torsion to finding the eigenvectors of the covariant derivative

with eigenvalue 1
2
D lnϕ (at least in this coordinate-free notation). In operator language,

we can construct a Green’s function for our differential operator. The other equations of

motion we get from varying the other fields are

δSP

δea
= ϵabcdϕe

b ∧Rcd = 0
δSP

δϕ
= ϵabcde

a ∧ eb ∧Rcd = 0. (A.6)

The second equality shows that the field ϕ acts as a Lagrange multiplier. Interestingly,

this equation is actually implied by the variation in the tetrad fields, which implies a

redundancy in our description.
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