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1 Introduction

We want to derive the energy-momentum tensor for a scalar field, ϕ, from variations of

the metric, gµν . In a typical QFT course, one can derive the energy-momentum tensor

by simply considering Noether’s Theorem. The theorem states that every symmetry of a

Lagrangian, L, carries with it a conserved quantity i.e.

L → L+ δL ⇒ δL = 0. (1.1)

In flat space, the Lagrangian for a (free) scalar field is given simply by

L = −1

2
ηµν∂µϕ∂νϕ− V (ϕ), (1.2)

where V (ϕ) contains all the mass and self-interacting terms of the scalar field. The

above expression is invariant under the transformation xµ → x′µ = xµ + ϵµ where ϵµ is a

constant. Under this transformation, the Lagrangian varies by

L → −1

2
η′µν

∂ϕ′

∂x′µ
∂ϕ′

∂x′ν − V (ϕ′) = −1

2
ηµν

∂ϕ

∂xµ

∂ϕ

∂xν
− V (ϕ) = L, (1.3)

where we used the fact that ϕ′(x′) = ϕ(x), η′µν = ηµν and

∂

∂x′µ =
∂

∂xµ
. (1.4)

1



So the Lagrangian is invariant under constant spacetime translation. Therefore we

can identify the conserved quantity. Now we again let x′µ = xµ + ϵµ and we get

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ) +

∂L
∂xµ

ϵµ = ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
+

∂L
∂xµ

ϵµ = 0, (1.5)

where we used the Euler-Lagrange Equations with ∂L
∂ϕ

= ∂µ
∂L

∂(∂µϕ)
. Now we take

δϕ(x) = − ∂ϕ
∂xν ϵ

ν = − ∂ϕ
∂xν

ϵν and the total change in the Lagrangian is then

δL = ∂µ

[
∂L

∂(∂µϕ)
∂νϕ− gµνL

]
ϵν ≡ ∂µT

µνϵν = 0, (1.6)

where we can define the energy-momentum tensor for the scalar field to be

T µν =
∂L

∂(∂µϕ)
∂νϕ− gµνL. (1.7)

Unfortunately, the problem with this definition of the energy-momentum tensor is

that (1) in general it’s not symmetric and (2) its not gauge invariant. These both are

exemplified in E&M where the energy momentum tensor is written as

T µν =
∂L

∂(∂µAλ)
∂νAλ − gµνL, (1.8)

which is clearly not symmetric, let alone gauge invariant. Thus, we need a defini-

tion of the energy-momentum tensor that is symmetric (because the Einstein tensor is

symmetric) as well as gauge invariant. The definition that does this is

Tµν = − 2√
−g

δSM

δgµν
, (1.9)

where S is the action of whatever matter fields that exist in the Lagrangian.

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ℏ = kB = 1. The reduced four dimensional Planck mass is MPl =

(8πG)−1/2 ≈ 2.43 × 1018GeV. The d’Alembert and Laplace operators are defined to be

□ ≡ ∂µ∂
µ = −∂2

t +∇2 and ∇2 = ∂i∂
i respectively. We use boldface letters r to indicate 3-

vectors and x and p to denote 4-vectors. Conventions for the curvature tensors, covariant

and Lie derivatives are all taken from Carroll.
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2 The Derivation

Here we derive the proper form of the stress-energy tensor given arbitrary coupling to

the curvature scalar. First we reproduce the relevant expression

SM = −1

2

∫ √
−g

[
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

]
d4x . (2.1)

Now we vary with respect to the metric. We write

δSM = −1

2

∫
δ
√
−g d4x

[
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

]
− 1

2

∫ √
−g d4x

[
δgµν ∂µϕ∂νϕ+ ξ δRϕ2

]
.

(2.2)

We’ve done previous derivations for what δ
√
−g and δR are, so we will just quote

those results

δ
√
−g = −1

2

√
−ggµν δg

µν , δR = Rµν δg
µν + gµν δRµν , (2.3)

where the variation in the Ricci scalar can be further expanded into

δR = Rµν δg
µν + (gµνgλρ − gµλgνρ)∇λ[∇µ δgνρ +∇ν δgµρ −∇ρ δgµν ]. (2.4)

We also needed the following identities in order to compute the above

δgµν = −gµλgνρ δg
λρ , gµν δgµν = −gµν δg

µν . (2.5)

Next we can throw these terms into the action to get

δSM = −1

2

∫ (
−1

2

√
−ggµν δg

µν

)
d4x

[
gλρ∂λϕ∂ρϕ+m2ϕ2 + ξRϕ2

]
− 1

2

∫ √
−g d4x

[
δgµν ∇µϕ∇νϕ+ ξ

(
ϕ2Rµν δg

µν + δgµν gµν□ϕ2 − δgµν ∇µ∇νϕ
2
)]
.

(2.6)

We can write this under a single integral sign

δSM = −1

2

∫ √
−g d4x δgµν

[
∇µϕ∇νϕ− 1

2
gµνg

λρ∇λϕ∇νϕ− 1

2
m2ϕ2gµν + ξ

(
gµν□ϕ2 −∇µ∇νϕ

2
)

+ξ

(
Rµν −

1

2
Rgµν

)
ϕ2

]
.

(2.7)
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Now by boldly defining the stress-energy tensor by the previous formula we gave,

we’re left with

Tµν = ∇µϕ∇νϕ−
1

2
gµνg

λρ∇λϕ∇ρϕ−
1

2
m2ϕ2gµν+ξ

(
gµν□ϕ2 −∇µ∇νϕ

2
)
+ξ

(
Rµν −

1

2
Rgµν

)
ϕ2.

(2.8)

We can also compute the trace given by

T ≡ gµνTµν = −∇µϕ∇µϕ− 2m2ϕ2 + 3ξ□ϕ2 − ξRϕ2. (2.9)

We can do partial integration on the first gradient-squared term to get

T = −∇µ(ϕ∇µϕ) + ϕ□ϕ−m2ϕ2 − ξRϕ2 −m2ϕ2 + 3ξ□ϕ2 (2.10)

= −∇µ(ϕ∇µϕ)− ϕ
(
−□+m2 + ξR

)
ϕ−m2ϕ2 + 3ξ∇µ(2ϕ∇µϕ) (2.11)

= −(1− 6ξ)∇µ(ϕ∇µϕ)−m2ϕ2, (2.12)

where we made use of the Klein-Gordon equations of motion for the scalar field

−□ϕ+m2ϕ+ ξRϕ = 0, (2.13)

as well as the fact that

□ϕ2 = ∇µ∇µϕ
2 = 2∇µ(ϕ∇µϕ). (2.14)

We can clearly see that for ξ = 1/6 and m = 0 that the trace vanishes. This tells

us that the stress-energy tensor and hence the action is conformally invariant when we

set ξ = 1/6 and m = 0. Finally, we can express the energy-momentum tensor in an

alternative way show to be

Tµν = (1− 2ξ)∂µϕ∂νϕ− 1

2
(1− 4ξ)gµν(∇ϕ)2 − 1

2
m2ϕ2gµν + ξGµνϕ

2

+ 2ξ(ϕ□ϕgµν − ϕ∂µ∂νϕ+ ϕΓλ
µν∂λϕ),

(2.15)

where (∇ϕ)2 ≡ gλρ∇λϕ∇ρϕ.
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