Energy Momentum Tensor for Generic Scalar Field Coupling to Gravity

Marcell Howard

February 29, 2024

1 Introduction

We want to derive the energy-momentum tensor for a scalar field, ϕ, from variations of the metric, $g_{\mu \nu}$. In a typical QFT course, one can derive the energy-momentum tensor by simply considering Noether's Theorem. The theorem states that every symmetry of a Lagrangian, \mathcal{L}, carries with it a conserved quantity i.e.

$$
\begin{equation*}
\mathcal{L} \rightarrow \mathcal{L}+\delta \mathcal{L} \Rightarrow \delta \mathcal{L}=0 \tag{1.1}
\end{equation*}
$$

In flat space, the Lagrangian for a (free) scalar field is given simply by

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi) \tag{1.2}
\end{equation*}
$$

where $V(\phi)$ contains all the mass and self-interacting terms of the scalar field. The above expression is invariant under the transformation $x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\epsilon^{\mu}$ where ϵ^{μ} is a constant. Under this transformation, the Lagrangian varies by

$$
\begin{equation*}
\mathcal{L} \rightarrow-\frac{1}{2} \eta^{\prime \mu \nu} \frac{\partial \phi^{\prime}}{\partial x^{\prime \mu}} \frac{\partial \phi^{\prime}}{\partial x^{\prime \nu}}-V\left(\phi^{\prime}\right)=-\frac{1}{2} \eta^{\mu \nu} \frac{\partial \phi}{\partial x^{\mu}} \frac{\partial \phi}{\partial x^{\nu}}-V(\phi)=\mathcal{L}, \tag{1.3}
\end{equation*}
$$

where we used the fact that $\phi^{\prime}\left(x^{\prime}\right)=\phi(x), \eta_{\mu \nu}^{\prime}=\eta_{\mu \nu}$ and

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}=\frac{\partial}{\partial x^{\mu}} \tag{1.4}
\end{equation*}
$$

So the Lagrangian is invariant under constant spacetime translation. Therefore we can identify the conserved quantity. Now we again let $x^{\mu}=x^{\mu}+\epsilon^{\mu}$ and we get

$$
\begin{equation*}
\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu}(\delta \phi)+\frac{\partial \mathcal{L}}{\partial x^{\mu}} \epsilon^{\mu}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right)+\frac{\partial \mathcal{L}}{\partial x^{\mu}} \epsilon^{\mu}=0 \tag{1.5}
\end{equation*}
$$

where we used the Euler-Lagrange Equations with $\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}$. Now we take $\delta \phi(x)=-\frac{\partial \phi}{\partial x^{\nu}} \epsilon^{\nu}=-\frac{\partial \phi}{\partial x_{\nu}} \epsilon_{\nu}$ and the total change in the Lagrangian is then

$$
\begin{equation*}
\delta \mathcal{L}=\partial_{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial^{\nu} \phi-g^{\mu \nu} \mathcal{L}\right] \epsilon_{\nu} \equiv \partial_{\mu} T^{\mu \nu} \epsilon_{\nu}=0 \tag{1.6}
\end{equation*}
$$

where we can define the energy-momentum tensor for the scalar field to be

$$
\begin{equation*}
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial^{\nu} \phi-g^{\mu \nu} \mathcal{L} . \tag{1.7}
\end{equation*}
$$

Unfortunately, the problem with this definition of the energy-momentum tensor is that (1) in general it's not symmetric and (2) its not gauge invariant. These both are exemplified in E\&M where the energy momentum tensor is written as

$$
\begin{equation*}
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A^{\lambda}\right)} \partial^{\nu} A^{\lambda}-g^{\mu \nu} \mathcal{L} \tag{1.8}
\end{equation*}
$$

which is clearly not symmetric, let alone gauge invariant. Thus, we need a definition of the energy-momentum tensor that is symmetric (because the Einstein tensor is symmetric) as well as gauge invariant. The definition that does this is

$$
\begin{equation*}
T_{\mu \nu}=-\frac{2}{\sqrt{-g}} \frac{\delta S_{M}}{\delta g^{\mu \nu}}, \tag{1.9}
\end{equation*}
$$

where S is the action of whatever matter fields that exist in the Lagrangian.

Conventions We use the mostly plus metric signature, i.e. $\eta_{\mu \nu}=(-,+,+,+)$ and units where $c=\hbar=k_{B}=1$. The reduced four dimensional Planck mass is $M_{\mathrm{Pl}}=$ $(8 \pi G)^{-1 / 2} \approx 2.43 \times 10^{18} \mathrm{GeV}$. The d'Alembert and Laplace operators are defined to be $\square \equiv \partial_{\mu} \partial^{\mu}=-\partial_{t}^{2}+\nabla^{2}$ and $\nabla^{2}=\partial_{i} \partial^{i}$ respectively. We use boldface letters \mathbf{r} to indicate 3vectors and x and p to denote 4 -vectors. Conventions for the curvature tensors, covariant and Lie derivatives are all taken from Carroll.

2 The Derivation

Here we derive the proper form of the stress-energy tensor given arbitrary coupling to the curvature scalar. First we reproduce the relevant expression

$$
\begin{equation*}
S_{M}=-\frac{1}{2} \int \sqrt{-g}\left[g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}+\xi R \phi^{2}\right] \mathrm{d}^{4} x \tag{2.1}
\end{equation*}
$$

Now we vary with respect to the metric. We write

$$
\begin{align*}
\delta S_{M} & =-\frac{1}{2} \int \delta \sqrt{-g} \mathrm{~d}^{4} x\left[g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}+\xi R \phi^{2}\right] \tag{2.2}\\
& -\frac{1}{2} \int \sqrt{-g} \mathrm{~d}^{4} x\left[\delta g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\xi \delta R \phi^{2}\right] .
\end{align*}
$$

We've done previous derivations for what $\delta \sqrt{-g}$ and δR are, so we will just quote those results

$$
\begin{equation*}
\delta \sqrt{-g}=-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}, \quad \delta R=R_{\mu \nu} \delta g^{\mu \nu}+g^{\mu \nu} \delta R_{\mu \nu} \tag{2.3}
\end{equation*}
$$

where the variation in the Ricci scalar can be further expanded into

$$
\begin{equation*}
\delta R=R_{\mu \nu} \delta g^{\mu \nu}+\left(g^{\mu \nu} g^{\lambda \rho}-g^{\mu \lambda} g^{\nu \rho}\right) \nabla_{\lambda}\left[\nabla_{\mu} \delta g_{\nu \rho}+\nabla_{\nu} \delta g_{\mu \rho}-\nabla_{\rho} \delta g_{\mu \nu}\right] \tag{2.4}
\end{equation*}
$$

We also needed the following identities in order to compute the above

$$
\begin{equation*}
\delta g_{\mu \nu}=-g_{\mu \lambda} g_{\nu \rho} \delta g^{\lambda \rho}, \quad g^{\mu \nu} \delta g_{\mu \nu}=-g_{\mu \nu} \delta g^{\mu \nu} . \tag{2.5}
\end{equation*}
$$

Next we can throw these terms into the action to get

$$
\begin{align*}
\delta S_{M} & =-\frac{1}{2} \int\left(-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}\right) \mathrm{d}^{4} x\left[g^{\lambda \rho} \partial_{\lambda} \phi \partial_{\rho} \phi+m^{2} \phi^{2}+\xi R \phi^{2}\right] \\
& -\frac{1}{2} \int \sqrt{-g} \mathrm{~d}^{4} x\left[\delta g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi+\xi\left(\phi^{2} R_{\mu \nu} \delta g^{\mu \nu}+\delta g^{\mu \nu} g_{\mu \nu} \square \phi^{2}-\delta g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi^{2}\right)\right] . \tag{2.6}
\end{align*}
$$

We can write this under a single integral sign

$$
\begin{align*}
\delta S_{M}=-\frac{1}{2} \int \sqrt{-g} \mathrm{~d}^{4} x \delta g^{\mu \nu} & {\left[\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu \nu} g^{\lambda \rho} \nabla_{\lambda} \phi \nabla_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2} g_{\mu \nu}+\xi\left(g_{\mu \nu} \square \phi^{2}-\nabla_{\mu} \nabla_{\nu} \phi^{2}\right)\right.} \\
& \left.+\xi\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \phi^{2}\right] . \tag{2.7}
\end{align*}
$$

Now by boldly defining the stress-energy tensor by the previous formula we gave, we're left with

$$
\begin{equation*}
T_{\mu \nu}=\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu \nu} g^{\lambda \rho} \nabla_{\lambda} \phi \nabla_{\rho} \phi-\frac{1}{2} m^{2} \phi^{2} g_{\mu \nu}+\xi\left(g_{\mu \nu} \square \phi^{2}-\nabla_{\mu} \nabla_{\nu} \phi^{2}\right)+\xi\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \phi^{2} . \tag{2.8}
\end{equation*}
$$

We can also compute the trace given by

$$
\begin{equation*}
T \equiv g^{\mu \nu} T_{\mu \nu}=-\nabla^{\mu} \phi \nabla_{\mu} \phi-2 m^{2} \phi^{2}+3 \xi \square \phi^{2}-\xi R \phi^{2} . \tag{2.9}
\end{equation*}
$$

We can do partial integration on the first gradient-squared term to get

$$
\begin{align*}
T & =-\nabla^{\mu}\left(\phi \nabla_{\mu} \phi\right)+\phi \square \phi-m^{2} \phi^{2}-\xi R \phi^{2}-m^{2} \phi^{2}+3 \xi \square \phi^{2} \tag{2.10}\\
& =-\nabla^{\mu}\left(\phi \nabla_{\mu} \phi\right)-\phi\left(-\square+m^{2}+\xi R\right) \phi-m^{2} \phi^{2}+3 \xi \nabla^{\mu}\left(2 \phi \nabla_{\mu} \phi\right) \tag{2.11}\\
& =-(1-6 \xi) \nabla^{\mu}\left(\phi \nabla_{\mu} \phi\right)-m^{2} \phi^{2}, \tag{2.12}
\end{align*}
$$

where we made use of the Klein-Gordon equations of motion for the scalar field

$$
\begin{equation*}
-\square \phi+m^{2} \phi+\xi R \phi=0, \tag{2.13}
\end{equation*}
$$

as well as the fact that

$$
\begin{equation*}
\square \phi^{2}=\nabla^{\mu} \nabla_{\mu} \phi^{2}=2 \nabla^{\mu}\left(\phi \nabla_{\mu} \phi\right) . \tag{2.14}
\end{equation*}
$$

We can clearly see that for $\xi=1 / 6$ and $m=0$ that the trace vanishes. This tells us that the stress-energy tensor and hence the action is conformally invariant when we set $\xi=1 / 6$ and $m=0$. Finally, we can express the energy-momentum tensor in an alternative way show to be

$$
\begin{gather*}
T_{\mu \nu}=(1-2 \xi) \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2}(1-4 \xi) g_{\mu \nu}(\nabla \phi)^{2}-\frac{1}{2} m^{2} \phi^{2} g_{\mu \nu}+\xi G_{\mu \nu} \phi^{2} \tag{2.15}\\
+2 \xi\left(\phi \square \phi g_{\mu \nu}-\phi \partial_{\mu} \partial_{\nu} \phi+\phi \Gamma_{\mu \nu}^{\lambda} \partial_{\lambda} \phi\right),
\end{gather*}
$$

where $(\nabla \phi)^{2} \equiv g^{\lambda \rho} \nabla_{\lambda} \phi \nabla_{\rho} \phi$.

