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1 Introduction

We want to derive the energy-momentum tensor for a scalar field, ¢, from variations of
the metric, g,,. In a typical QFT course, one can derive the energy-momentum tensor
by simply considering Noether’s Theorem. The theorem states that every symmetry of a

Lagrangian, £, carries with it a conserved quantity i.e.

L— L+6L=6L=0. (1.1)

In flat space, the Lagrangian for a (free) scalar field is given simply by

L= 50" 0,00,6 ~ V(6), (12

where V(¢) contains all the mass and self-interacting terms of the scalar field. The
above expression is invariant under the transformation z# — ' = x* + ¢ where € is a

constant. Under this transformation, the Lagrangian varies by

L 09 04 L w00 06

where we used the fact that ¢'(2') = ¢(z), 1, = 1., and
0 0
o D (14)
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So the Lagrangian is invariant under constant spacetime translation. Therefore we

can identify the conserved quantity. Now we again let x/* = x* + €* and we get

oL oL (9£ oL oL
= — e R ISy 1
oL (99255 +8(8u¢)a(5¢) ot ) <3(8u¢)5¢) i€ =0, (1.5)
where we used the Euler-Lagrange Equations with ‘% = 8M a(a Now we take

do(x) = —%e” = —g—‘%,, and the total change in the Lagrangian is then

5L =0, 656% w4@:awm_o (1.6)
9(0,9)

where we can define the energy-momentum tensor for the scalar field to be

oL
™ = "¢ — g"' L. 1.7

Unfortunately, the problem with this definition of the energy-momentum tensor is
that (1) in general it’s not symmetric and (2) its not gauge invariant. These both are
exemplified in E&M where the energy momentum tensor is written as

v aﬁ VA v
T = S A L (1.8)

which is clearly not symmetric, let alone gauge invariant. Thus, we need a defini-
tion of the energy-momentum tensor that is symmetric (because the Einstein tensor is
symmetric) as well as gauge invariant. The definition that does this is

T, = ——— M 1.
224 /__g(sg“y’ ( 9)

where S is the action of whatever matter fields that exist in the Lagrangian.

Conventions We use the mostly plus metric signature, i.e. 7, = (—,+,+,+) and
units where ¢ = h = kg = 1. The reduced four dimensional Planck mass is Mp, =
(87G) /% ~ 2.43 x 10" GeV. The d’Alembert and Laplace operators are defined to be
0= 0,0" = —0}4+V? and V? = 90" respectively. We use boldface letters r to indicate 3-
vectors and x and p to denote 4-vectors. Conventions for the curvature tensors, covariant

and Lie derivatives are all taken from Carroll.



2 The Derivation

Here we derive the proper form of the stress-energy tensor given arbitrary coupling to

the curvature scalar. First we reproduce the relevant expression

S = [ V7918 0,00,6 + i + €] e, 2.1

Now we vary with respect to the metric. We write

3Su == [ V=9a% [#0,00,6+ m’? + EReF]
(2.2)

= / V=gd'z [59" 0,60,6 + E SR ¢7].

We’ve done previous derivations for what d\/—g and dR are, so we will just quote

those results

1
OV=g =~ 5V =99 09", OR =Ry 09" + 9" Ry (2:3)

where the variation in the Ricci scalar can be further expanded into

SR = R, 6" + (9" g™ — ¢"*g"")VAIV . 0Gup + Vo 0G40 — YV 6Guu)- (2.4)

We also needed the following identities in order to compute the above

89 = —Gurdup sg, g™ 0w = —Gu 69" . (2.5)

Next we can throw these terms into the action to get

1

05m = —3 / (_%\/—_gg;w 59’”) 'z [ 0\p0,6 + m*¢* + ERY’]

1
- 5 / vV—g d4I [6.9“” vu¢vu¢ + €(¢2Ruu 5guu + 5.9”” guVDQSQ - 5.9“” V,uvugbg)} :

(2.6)
We can write this under a single integral sign
1 1 1
5SM - _5 / vV —4g d4l’ 6.9#” |:v,u¢vl/¢ - ig;wg)\vagbvugb - §m2¢2g,uu + g(g,uulj(b2 - Vuvu¢2)
1
+§ (Rm/ - §Rg;w) ¢2:| :
(2.7)



Now by boldly defining the stress-energy tensor by the previous formula we gave,

we're left with

1 1 1
T/w = qubqub—EguygApVA¢Vp¢—§m2¢quy+§ (guVDQbQ - vuvu¢2)+§ (R,ul/ - §Rg;w) ¢2~

(2.8)
We can also compute the trace given by
T = g"™T,, = —V"¢V ¢ — 2m*¢® + 3¢00¢* — ERP*. (2.9)
We can do partial integration on the first gradient-squared term to get
T = —V*(¢V,.0) + ¢0¢ — m*¢® — ERP® — m*¢* + 3¢0¢° (2.10)

= —VH(¢V,.0) — ¢(—O+ m* + ER)p — m*¢® + 3EVH(29V ,0) (2.11)

= —(1 — 6£)V*(¢V .0) — m*¢?, (2.12)

where we made use of the Klein-Gordon equations of motion for the scalar field

—0¢ +m?¢ + ERp = 0, (2.13)

as well as the fact that

O¢® = VIV ,,¢* = 2V*(¢V ,.0). (2.14)

We can clearly see that for £ = 1/6 and m = 0 that the trace vanishes. This tells
us that the stress-energy tensor and hence the action is conformally invariant when we
set £ = 1/6 and m = 0. Finally, we can express the energy-momentum tensor in an
alternative way show to be

T = (1= 26)0,00,0 = 5(1 — 1€)9(V6)* = 3102000 + EGu?
(2.15)

+26(00¢ g, — 0,0, + 617,000),

where (V¢)? = g}V, ¢V 0.
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