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1 Cubic Field

Here we are interested in computing the Feynman rules for a Lagrangian that is cubic in

a massless, free scalar field. The Lagrangian is given by the following

L3 = − λ

3!
ϕ3. (1.1)

To find the factor that will be placed at each vertex of our Feynmann diagram, we

need to keep taking derivatives until the scalar field has completely vanished from the

Lagrangian. We proceed with the first derivative

δL3

δϕ
= −1

2
λϕ2. (1.2)

Since ϕ is still present within the Lagrangian we need to take another derivative. The

second derivative is

δ2L3

δϕ2
= −λϕ. (1.3)

Now that ϕ appears linearly within the functional, we need only take one more deriva-

tive. Hence:

δ3L3

δϕ3
= −λ. (1.4)

Next we can write down the amplitude for this Lagrangian.
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Since this process has only one vertex, calculating the amplitude is fairly trivial. The

amplitude is merely A = λ. So that was easy, which is exactly what we expected since

this is the simplest lowest order tree diagram that contributes to the overall scattering.
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2 Quadratic Derivative

We are interested in calculating the scattering amplitude for a free and massless scalar

field whose coupled to its own derivatives. The Lagrangian we wish to work with is

L3 = − λ

3!
ϕ(∂ϕ)2, (2.1)

where λ is the coupling constant of our toy theory, ϕ is the scalar field and (∂ϕ)2 =

∂µϕ∂
µϕ is a shorthand for the kinetic energy of the field. The first derivative is given by

δL3

δϕ
= − λ

3!
(∂ϕ)2 − λ

3
ϕ(−ipµi )∂µϕ, (2.2)

where we use the Feynman rule that

δ∂µϕ∂
µϕ

δϕ
= 2(−ipµ)∂µϕ. (2.3)

Taking the second derivative with respect to ϕ gives us

δ2L3

δϕ2
= −λ

3
(ipµj )∂µϕ− λ

3
(−ipµi )∂µϕ− λ

3
ϕ(−ipj,µ )(−ipµi ). (2.4)

Differentiating one last time with respect to ϕ gets us,

δ3L3

δϕ3
= −1

3
λ(ipk,µ )(ip

µ
j )−

1

3
λ(ipk,µ )(ip

µ
i )−

1

3
λ(ipj,µ )(ip

µ
i ) (2.5)

=
λ

3
(pi · pj + pj · pk + pk · pi). (2.6)

Before we carry on with the calculating, it is useful for us to work in Mandelstam

variables (s, t, u) where

s = (p1 + p2)
2 = (p3 + p4)

2 = 2p1 · p2, (2.7)

t = (p1 − p3)
2 = (p2 − p4)

2 = −2p1 · p3, (2.8)

u = (p1 − p4)
2 = (p2 − p3)

2 = −2p1 · p4, (2.9)

where we used the fact that m1 = m2 = m3 = m4 = 0. Next we need to compute

the vertex rule for each diagram in Mandelstam variables. We introduce the parameter

α = 1
3
λ(pi · pj + pj · pk + pk · pi) for convenience.
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Now we can compute the scattering amplitude, A, for this Lagrangian. Since there

are three possible diagrams that can be constructed from this theory, it is typical for

one to break up each amplitude contribution into channels: s, t, and u. The most left

diagram is called the s-channel, the center diagram is called the t-channel, and the right

most diagram is the u-channel. Griffiths lays out a prescription on how to calculate the

momenta of the internal line, but we can skip to the right answer.
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First we calculate the vertex rule for the s−channel. From the diagram we can see

pi = p1, pj = p2, pk = −(p1 + p2) ⇒ αs = −λ

6
s. (2.10)

The t−channel momenta and vertex rule is given by

pi = p1, pj = −(p1 − p3), pk = −p3 ⇒ αt = −λ

6
t. (2.11)

And finally, the u−channel is shown to be

pi = p1, pj = −p4, pk = −(p1 − p4) ⇒ αu = −λ

6
u. (2.12)
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However, there is a constraint on the Mandelstam variables in that they satisfy the

following equation

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4, (2.13)

where mi is the mass of the i-th particle. Since we’re assuming all the scattered

particles are massless, we can eliminate on of the variables in favor of the other two. The

convention is to write u = −(s+t). Now we can calculate the amplitude for each diagram

As =
α2
s

s
, At =

α2
t

t
, Au =

α2
u

u
. (2.14)

Thus the total scattering amplitude, the amplitude that is contributed by all three

Feynman diagrams is

A = As +At +Au. (2.15)

Remembering that αp = αp(s, t, u), we can simplify the total amplitude just in terms

of the coupling constant and Mandelstam variables. Proceeding accordingly, we get

A =
1

s

(
λ

6

)2

s2 +
1

t

(
λ

6

)2

t2 +
1

u

(
λ

6

)2

u2 ⇔
(
λ

6

)2

(s+ t+ u) = 0 (2.16)

And thus, the scattering amplitude for A3 is A = 0.
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3 Quadratic and d’Alembertian Derivatives

Lastly, we would like to calculate the scattering amplitude for the following Lagrangian:

L3 =
1

Λ3
(∂ϕ)2□ϕ, (3.1)

where □ = ∂µ∂
µ. Following our previous examples, the first derivative w.r.t ϕ gives

us

δL3

δϕ
=

1

Λ3
(2(−ipµi )∂µϕ□ϕ+ (∂ϕ)2(−ipνi )(−ipi,ν )), (3.2)

where we’ve employed Leibniz’s rule. Next we take the second derivative which takes

on the form

δ2L3

δϕ2
=

1

Λ3
(2(−ipµi )(−ipj,µ )□ϕ+ 2(−ipµi )∂µϕ(−ipνj )(−ipj,ν ) + 2(−ipµj )∂µϕ(−ipνi )(−ipi,ν )).

(3.3)

And finally, taking the third derivative gives us

δ3L3

δϕ3
=

1

Λ3
(2(−ipµi )(−ipj,µ )(−ipνk)(−ipk,ν ) + 2(−ipµi )(−ipk,µ )(−ipνj )(−ipj,ν )

+2(−ipµj )(−ipk,µ )(−ipνi )(−ipi,ν )).

(3.4)

Collecting all the terms and simplifying a bit gets us

δ3L3

δϕ3
=

2

Λ3
(pi · pj · p2k + pj · pk · p2i + pk · pi · p2j). (3.5)

We shall rewrite the diagrams from the previous section in order for us to get a clearer

picture as to what we wish to calculate.
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Going through the same procedure as we did in the quadratic derivative case, we find

that the vertex rule for each diagram is

αs = − s2

Λ3
, αt =

t2

Λ3
, αu =

(s+ t)2

Λ3
. (3.6)

And remembering that the scattering amplitude is nothing but the sum of the square

of the vertex divided by the channel, we get

A =
α2
s

s
+

α2
t

t
+

α2
u

u
⇔ −3st

Λ6
(s+ t) (3.7)

And thus, we have the scattering amplitude for this Lagrangian.
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