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We are interested in calculating the amplitude and the cross section for Compton

scattering for particles of differing spins. Compton scattering being 2→2 interactions

between of boson and some other particle. If we wish to tackle gravitational scattering

off of particles of varying spins, it’ll be important for us to review the language by which

we will conduct our analysis. We take the usual canonical/second quantization route for

analyzing scattering (as this is the method that is most familiar to the author) and cover

the cases for scalar/vector and spinor/vector scattering as warm ups for the real thing:

scalar/tensor, vector/tensor, and spinor/tensor.

This document is organized as follows: section 2 will be dedicated to writing down

the respective Lagrangians, equations of motion, and quantizations for a complex scalar,

vector, and spinor field. In section 3, we shall focus on putting in interactions with a

particular focus to those relevant for Compton scattering. We will then dedicate the last

section to gravitational couplings.

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and

units where c = ℏ = 1. The reduced four dimensional Planck mass is MP = 1√
8πG

≈

2.43 × 1018GeV. The d’Alembert and Laplace operators are defined to be □ ≡ ∂µ∂
µ =

−∂2t +∇2 and ∇2 = ∂i∂
i respectively. We use boldface letters r to indicate 3-vectors and

x and p to denote 4-vectors. Conventions for the curvature tensors, covariant and Lie

derivatives are all taken from Carroll.
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1 Scalar, Vector, and Spinor Field Canonical Analy-

sis

1.1 Complex Scalar Field

Consider the Lagrangian density

L = −∂µΦ†∂µΦ−M2Φ†Φ, (1.1)

where Φ is a complex scalar field. Note: no factor of 1/2 since a complex number can

be written as a combination of two real scalar fields i.e. Φ = 1√
2
(ϕ1 + iϕ2). We can plug

this decomposition into the Lagrangian to get

L = −1

2
∂µϕ1∂

µϕ1 −
1

2
M2ϕ2

1 −
1

2
∂µϕ2∂

µϕ2 −
1

2
M2ϕ2

2, (1.2)

which is just a theory with two scalar fields. Thus, one complex scalar field is equiv-

alent to two real scalar fields. We can write down the action for the complex scalar field

as

S =

∫
d4xL[Φ,Φ†, ∂Φ, ∂Φ†]. (1.3)

We take the field and its complex conjugate to be independent of one another. As

such, under the independent variations Φ → Φ + δΦ and Φ† → Φ† + δΦ† with both

variations going to zero at the boundary. The action varies as S → S + δS and we

require δS = 0 (the variational principle). As in the real case, we integrate by parts the

terms ∂µΦ∂
µ δΦ†, ∂µΦ

†∂µ δΦ and drop the surface terms

δS =

∫
d4x [(−□Φ +M2Φ) δΦ† + (−□Φ† +M2Φ†) δΦ], (1.4)

implies that the equations of motion for both fields are

∂L
∂Φ† − ∂µ

∂L
∂(∂µΦ†)

= −□Φ +M2Φ = 0,
∂L
∂Φ

− ∂µ
∂L

∂(∂µΦ)
= −□Φ† +M2Φ† = 0. (1.5)
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The solutions are called the ”Normal Modes”: Φ(r, t) = αpe
i(p·r−Ept). Plugging this

into the differential equations gives us

(
−E2

p + p2 +M2
)
Φ(r, t) = 0 ⇒ Ep =

√
p2 +M2, (1.6)

which looks a lot like a relativistic dispersion relation. Next we normalize the solutions

in a cube of side L with periodic boundary conditions (we’ll eventually take L → ∞)

such that ∫
d3r

∣∣∣∣ei(p·r−Ept)

√
V

∣∣∣∣2 = 1. (1.7)

This is the discrete momentum representation used in Statistical Mechanics with

∑
p

=
∑

nx,ny ,nz∈Z

→ V
∫

d3p

(2π)3
. (1.8)

The quantized solutions are

Φ̂(r, t) =
1√
V

∑
p

1√
2Ep

(âpe
ip·x+b̂†pe

−ip·x), Φ̂†(r, t) =
1√
V

∑
p

1√
2Ep

(â†pe
−ip·x+b̂pe

ip·x),

(1.9)

where p · x = ηµνxµpν = p · r− Ept, and â, b̂ are independent operators with

[
âp, â

†
q

]
= δpq =

[
b̂p, b̂

†
q

]
,

[
â, b̂
]
= [â, â] =

[
b̂, b̂
]
= . . . = 0. (1.10)

We can compute the Hamiltonian for this system. First the conjugate momentum is

Π(x) =
∂L
∂Φ̇

= Φ̇† ⇒ Π†(x) = Φ̇. (1.11)

And so the quantized Hamiltonian is thus

Ĥ = Π̂
˙̂
ϕ+ Π̂† ˙̂Φ† − L = Π̂†Π̂ + ∇̂Φ

†
· ∇̂Φ +M2Φ̂†Φ̂, (1.12)

with

Π̂†(x) =
˙̂
Φ =

−i√
V

∑
p

√
Ep

2
(âpe

ip·x − b̂†pe
−ip·x). (1.13)
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Terms ââ, b̂b̂, â†â†, b̂†b̂† cancel out and leaves us with

Ĥ =

∫
d3r Ĥ =

∑
p

ωp

(
â†pâp + b̂†pb̂p +

1

2
+

1

2

)
, (1.14)

where the two 1/2’s come from the two oscillators. We can also define a charge and

momentum operator

Q̂ =
∑
p

â†pâp − b̂†pb̂p, P̂ =
∑
p

p(â†pâp + b̂†pb̂p), (1.15)

and we can see that
[
P̂, Ĥ

]
. Note: the value of the charge for the â oscillators

is positive and for the b̂ oscillators is negative. We interpret this as the existence of

particles and anti-particles.

Hilbert Space: Fock Representation Because these are creation and annihilation

operators, we have the usual relations âp |0⟩ = b̂p |0⟩ = 0, ∀p ⇒ |0⟩ is the vacuum state.

We can also represent an arbitrary state as

(âp)
np√
np!

|0⟩ = |np⟩ ⇒ â†pâp |np⟩ = np |np⟩ , (1.16)

where |np⟩ is a state with np particles (for a fixed p). We also have Q̂ |np⟩ = np |np⟩.

We also have

(b̂p)
n̄p√
n̄p!

|0⟩ = |n̄p⟩ , (1.17)

which is a state of n̄p antiparticles in it and

Q̂ |n̄p⟩ = −n̄p |n̄p⟩ , (1.18)

which is the opposite sign of the particles. So we can conclude that particles have

the same energy as anti-particles Ep, but opposite charge. Using commutation relations

yields

[
Q̂, âp

]
= −âp,

[
Q̂, â†p

]
= â†p,

[
Q̂, b̂p

]
= b̂p,

[
Q̂, b̂†p

]
= −b̂†p. (1.19)
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Now consider θ = constant and

e−iθQ̂Φ̂(x)eiθQ̂ = Φ̂ + iθ
[
Φ̂, Q̂

]
+

(−iθ)2

2!

[
Q̂,
[
Q̂, Φ̂

]]
+ . . . , (1.20)

and
[
Q̂, Φ̂

]
= -Φ̂(x) which gives us

e−iθQ̂Φ̂(x)eiθQ̂ = Φ̂ + iθΦ̂ +
(iθ)2

2!
Φ̂ + . . . = eiθΦ̂(x). (1.21)

The phase, or global gauge transformation forms a group. In this case it is the unitary

group U(1): under two consecutive transformations by θ1 and θ2 and define the (group)

operator Û(θ) so that Û(θ)Φ̂Û †(θ) = eiθΦ̂ which we have identified as Û(θ) = e−iθQ̂.

We can see that this is an Abelian group1 by Û(θ1)Û(θ2) = e−iθ1Q̂e−iθ2Q̂ = e−i(θ1+θ2)Q̂ =

Û(θ2)Û(θ1). The group of phase transformations that keep L is a U(1)−Abelian group

and the generator is the conserved charge. The Noether conserved charges are the gen-

erators of the symmetry group of transformations.

Next we can construct the Green’s Function for the Klein-Gordon differential operator.

Suppose we have an external source J(t, r) coupled to a complex scalar field

L = −∂µΦ∂µΦ−M2Φ2 − JΦ ⇒ −□Φ +M2Φ = J. (1.22)

We can write the solution using a Green’s function G(x− y) that satisfies the differ-

ential equation

−□G(x− y) +M2G(x− y) = −δ(4)(x− y) = −δ(t− τ)δ(3)(r− s). (1.23)

Then, the solution to the equations of motion are

Φ(x) = Φ0(x)−
∫

d4y G(x− y)J(y), (1.24)

with −□Φ0 +M2Φ0 = 0. Find G(x− y) via a spacetime Fourier Transform

G(x− y) =

∫
d4p

(2π)4
eip·(x−y)G̃(p), (1.25)

1An Abelian group is a group where the group elements commute under the group operation.
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with pµ = (p0,p) and d4p = dp0 d3p and∫
d4p

(2π)4
eip·(x−y) = δ(4)(x− y). (1.26)

Inserting these Fourier Transforms into the differential equation yields

(p2 +M2)G̃(p) = −1, (1.27)

where p2 = (p0)2 − p2. Then

G(x− y) =

∫
R

dp0

2π

∫
d3p

(2π)3
e−ip0(t−τ)eip·(r−s)

(p0)2 − p2 +M2
. (1.28)

The problem with this expression is that the
∫
dp0 features singularities at p0 =

±
√

p2 +M2 = Ep along the real axis which is the range of integration. We need a

prescription to handle these singularities i.e. different ways of ”going around” the poles

at p0 = ±Ep. In the p0− Complex plane

Figure 1: The singularities ±Ep in the Complex p0-plane.

Consider the following contour deformations

These contour deformations are equivalent to the ”iϵ−prescriptions” with ϵ → 0+.

The Green’s function becomes

G̃(1)(p0,p) =
1

(p0 − iϵ)2 − E2
p

, G̃(2)(p0,p) =
1

(p0 + iϵ)2 − E2
p

(1.29)

so the poles are at p0 = ±Ep + iϵ and p0 = ±Ep − iϵ respectively. Next we have

G̃(3)(p) =
1

(p0)2 − E2
p − iϵ

=
1

(p0)2 − (E2
p + iϵ)

. (1.30)

Here the poles are at
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Figure 2: Contour deformation around the singularities in the complex p0-plane. Each
contour results in a different Green’s function.

Figure 3: Contour deformation making use of the ”iϵ−prescriptions”. By moving the
poles off of the real axis, we can compute the contour integral.

p0 = ±
√
E2

p + iϵ = ±Ep

√
1 +

iϵ

E2
p

≈ ±Ep

(
1 +

iϵ

2E2
p

)
= ±Ep

(
1 +

η

Ep

)
, (1.31)

where η = ϵ
2Ep

→ 0+. So there are two poles p0 = Ep + iη, and p0 = −Ep − iη and

η → 0+.

The last propagator is at

G̃(4)(p) =
1

(p0)2 − E2
p + iϵ

=
1

(p0)2 − (E2
p − iϵ)

, (1.32)

with the poles p0 = ±Ep

(
1− iη

Ep

)
= ±Ep ∓ iη.
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Figure 4: When applying the iϵ prescription to the poles in the Fourier Transform of the
Green’s function.

Figure 5: The placement of the poles for the 4-th Green’s function Fourier Transform.

1.1.1 Carrying Out The Integrals

All four cases have the form ∫ ∞

−∞

dp0

2π
e−ip0(t−τ)G̃(p0,p). (1.33)

Figure 6: Contour integral around the singularities ±Ep + iϵ. The upper half part of the
Complex p0−plane (i.e. Im p0 > 0) is the region when t− τ < 0. Closing the contour in
the bottom half plane (Im{p0} < 0) is done when t > τ .

For t− τ < 0, we close the contour in the upper half plane (UHP) because Im p0 > 0

which implies there are two poles (and we let ϵ → 0). Implement the Residue Theorem

and get
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2πi

2π

[
e−iEp(t−τ)

2Ep

− eiEp(t−τ)

2Ep

]
, (1.34)

where the first time is from the pole at Ep + iϵ and the second term is from the pole

at Ep − iϵ. For t− τ > 0, we must close in the lower half plane (LHP) since Im p0 < 0 ⇒

there are no poles in the LHP. Thus we can write∫
R

dp0

2π
G̃(p0,p)eip

0(t−τ) =
Θ(t− τ) sin(Ep(t− τ))

Ep

. (1.35)

In the integrals over p, we can write

−i
∫

d3p

(2π)3

[
eiEp(t−τ)e−ip·(r−s)

2Ep

− e−iEp(t−τ)eip·(r−s)

2Ep

]
. (1.36)

Taking the second term and relabeling p → −p, we can conclude

G(1)(x− y) =

∫
d3p

(2π)3
Θ(t− τ) sin(p · (x− y))

Ep

. (1.37)

We refer to this as the Advanced Green’s Function.

Figure 7: Here, closing in the upper half plane ensures τ > t and closing in the lower half
plane results in t > τ .

Here, both of the poles are in the LHP. This implies that the contour for τ > t is zero

and for t > τ (where we orient the contour clockwise) we get −2πi× sum of the residue

which yields

(−2πi)

2π

[
eiEp(t−τ)e−ip·(r−s)

2Ep

− e−iEp(t−τ)eip·(r−s)

2Ep

]
Θ(t− τ) = −sin(Ep(t− τ))Θ(t− τ)

Ep

,

(1.38)

where the first term from the Ep−iϵ pole and the second term comes from the −Ep−iϵ

pole. Doing the same treatment as before yields the Retarded Green’s Function
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G(2)(x− y) = −
∫

d3p

(2π)3
sin(p · (x− y))

Ep

Θ(t− τ). (1.39)

The third Green’s function is:

Figure 8: The poles that we integrate around now become ±Ep ± iη and we the closing
in the upper and lower half plane retain their same meanings as previously indicated.

For t > τ , we close the contour in the LHP around the pole at −Ep− iη (η → 0+) we

orient the contour clockwise and get the pole −2πi
2π

eiEp(t−τ)

(−2Ep)
. For τ > t, close in the UHP

and orient the contour clockwise around the pole Ep + iη ⇒ 2πi
2π

e−iEp(t−τ)

2Ep
and the sum of

the residues become

i

[
e−iEp(t−τ)

2Ep

Θ(τ − t) +
eiEp(t−τ)

2Ep

Θ(t− τ)

]
, (1.40)

and the Green’s function becomes

G(3)(x− y) = i

∫
d3p

(2π)3
eip·(r−s)

2Ep

[
eiEp(t−τ)Θ(t− τ) + e−iEp(t−τ)Θ(τ − t)

]
. (1.41)

The last Green’s function is:

Figure 9: Finally the contour here is for the poles at ±Ep ∓ iη with closing in either the
upper or lower half of the plane retaining the same meaning as the other contours.

For t > τ , close in LHP (clockwise) around the pole Ep − iη ⇒ −2πi
2π

e−iEp(t−τ)

2Ep
and for

τ > t close in the UHP (counterclockwise) pole at −Ep + iη ⇒ 2πi
2π

e−Ep(t−τ)

(−2Ep)
. And the

residue theorem yields
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− i

2Ep

[
e−iEp(t−τ)Θ(t− τ) + eiEp(t−τ)Θ(τ − t)

]
, (1.42)

and finally we have the Time-Ordered or Feynman Green’s Function/Feynman Prop-

agator

G(4)(x− y) = −i
∫

d3p

(2π)3
eip·(r−s)

2Ep

[
e−iEp(t−τ)Θ(t− τ) + eiEp(t−τ)Θ(τ − t)

]
. (1.43)

Green’s functions differ by a solution of the homogeneous equation. This can be

shown from, the relation Θ(t− τ) + Θ(τ − t) = 1 and the fact that e±iEp(t−τ)eip·(r−s) are

particular solutions of the homogeneous equation (−□+M2)G = 0.

The Feynman or time ordered Green’s function plays a fundamental role in perturba-

tion theory.

1.1.2 Feynman Propagator

In the second term in G(4), relabel p → −p in the d3p

G(4)(x− y) ≡ GF (x− y) = −i
∫

d3p

(2π)3
1

2Ep

(
e−iωp(t−τ)eip·(r−s)Θ(t− τ) + eiωp(t−τ)e−ip·(r−s)Θ(τ − t)

)
(1.44)

=

∫
d4p

(2π)4
e−ip0(t−τ)eip·(r−s)

p2 −M2 + iϵ
. (1.45)

Recall

⟨0| ϕ̂(r, τ)ϕ̂(s, τ) |0⟩ =
∫

d3p

(2π)3
e−iEp(t−τ)eip·(r−s)

2ωp

, ⟨0| ϕ̂(s, τ)ϕ̂(r, τ) |0⟩ =
∫

d3p

(2π)3
eiEp(t−τ)e−ip·(r−s)

2Ep

,

(1.46)

which implies that the Feynman Green’s function can be written as

iGF (x−y) = Θ(t−τ) ⟨0| ϕ̂(r, τ)ϕ̂(s, τ) |0⟩+Θ(τ−t) ⟨0| ϕ̂(s, τ)ϕ̂(r, t) |0⟩ ≡ ⟨0| T (ϕ̂(r, t)ϕ̂(s, τ)) |0⟩ ,

(1.47)

which is the time-ordered correlation function (or the time ordered product).
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1.2 (Massless) Vector Field

E&M can be deduced from the theory of a massless spin-1 vector field. Maxwell’s Equa-

tions are then obtained from a variational principle for fields similar to the case studied

before. The Lagrangian is

L[A, ∂A] = −1

4
F µνFµν + JµAµ, (1.48)

where Fµν = gµλgνρF
λρ = −(∂µAν − ∂νAµ). L is invariant under Lorentz Transfor-

mations: F µν → ΛΛFαβ, Fµν → Λ̃Λ̃Fαβ ⇒ F µνFµν is invariant and Jµ → Λµ
αJ

α, Aµ →

Λ̃α
µAα ⇒ JµAµ is invariant. Thus

S =

∫
d4xL, (1.49)

is invariant under Lorentz Transforms with −1
4
F µνFµν = 1

2
(E2 −B2).

Next we introduce the variational principle Aµ → Aµ + δAµ with δAµ
|t|,|r|→∞−−−−−→ 0.

Under this variation F → F + δF ⇒ two linear terms δ(F µν)Fµν + F µν δ(Fµν), but

these are the same because for two tensors F µν∆µν = Fµν∆
µν ⇒ δL = −1

2
F µν δ(Fµν) =

−1
2
F µν(∂ν δAµ − ∂µ δAν). We can relabel µ ↔ ν in the second term since all indices are

summed to get F νµ∂ν δAµ. Thus the Lagrangian and hence the action is

δL = −F µν∂ν δAµ ⇒ δS =

∫
d4x [−F µν∂ν δAµ + Jµ δAµ] = δS =

∫
d4x [∂νF

µν + Jµ] δAµ .

(1.50)

And we are thus left with the equations of motion ∂νF
µν = −Jµ. So ME are both

covariant and form invariant with Lagrangian L = −1
4
F µνFµν + JµAµ.

Gauge Symmetry The description of the physical fields E,B in terms of Aµ is redun-

dant:

A0(x) → A0(x)− ∂tΛ(x), A(x) → A(x) +∇Λ(x), (1.51)

and both equations can be bundled up into a single equation written as Aµ(x) →

Aµ(x) + ∂µΛ where Λ is an arbitrary differentiable function. The field strength tensor is

varies under this transformation as
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F µν = ∂νAµ − ∂µAν → ∂ν(Aµ + ∂µΛ)− ∂µ(Aν + ∂νΛ) = F µν + ∂µ∂νΛ− ∂ν∂µΛ = F µν ,

(1.52)

and so the field strength and by extension the electric and magnetic fields are invariant

under this transformation.

Under these local gauge transformations, we can use this invariance to reduce the

number of fields (Aµ) to the physically relevant ones describing physical degrees of freedom

(dof). Let us begin with the source-free (Jµ = 0) theory. The reduction to the physical

dof implies a constraint on the gauge fields Aµ. There are several possible constraints

that we can place.

Coulomb Gauge: ∇ ·A = 0.

For Jµ = 0 ⇒ ∇ · E = 0 ⇒ −∇2A0 − ∂t(∇ · A) ⇒ ∇2A0 = 0. Imposing regularity

at |r| → ∞, the only regular solution is A0 =constant which corresponds to a constant

potential that can be set to zero which we shall do so ourselves A0 = 0 and ∇ ·A = 0 ⇒

∂µA
µ = 0. Then the equations of motion in the Coulomb gauge become

∂νF
µν = 0 = ∂µ∂νA

ν − ∂ν∂
νAµ ⇒ □Aµ = 0. (1.53)

Since we have A0 = 0, this equation implies

□A(r, t) = 0. (1.54)

The solutions to these equations are plane waves:

(∂2t −∇2)A = 0 ⇒ A(r, t) = ϵ(p)e−i(p0t−p·r) ⇒ p20 − p2 = 0 ⇒ p0 ≡ ωp = p. (1.55)

Define pµ = (p0,p) ≡ (ωp,p) ⇒ pµxµ = ωpt − p · r and pµpµ = (p0)2 − p2 = 0 ⇒ pµ

is a null 4-vector.

The condition that −∇2A0 = 0 leaves the possibility of A0 being solely a function of

time: A0(t). However, this can be ”gauged” away by a transformation with a function

Λ(t) i.e.

A′0(t) = A0(t) + ∂tΛ(t) = 0 ⇒ Λ(t) = −
∫ t

0

A0(t′) dt′ . (1.56)
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For this plane wave solution, the Coulomb gauge condition ∇ · A = 0 ⇒ p · ϵ = 0

implies that ϵ is perpendicular to p ⇒ ϵ is transverse. Define ϵ̂1, ϵ̂2, p̂ as the right-handed

triad which acts as a basis in 3D Euclidean space.

Completeness of the Basis

ϵ̂i1ϵ̂
j
1 + ϵ̂i2ϵ̂

j
2 + ϵ̂i3ϵ̂

j
3 = δij = [13]

ij, ϵ̂1 × ϵ̂2 = p̂, ϵ̂2 × p̂ = ϵ̂1, p̂× ϵ̂1 = ϵ̂2. (1.57)

Figure 10: Basis describing
the propagation of photons
in terms of its wave vector
k̂ and polarization vectors
that are transverse to its di-
rection of propagation.

All of these properties combine together to yield

2∑
λ=1

ϵ̂iλϵ̂
j
λ = δij − p̂ip̂j, (1.58)

which is the transverse projection operator and

ϵ̂λ · ϵ̂ρ = δλρ. (1.59)

More On The Coulomb Gauge: A0 = 0, ∇ ·A = 0

Only 2 physical dof corresponding to two independent

transverse polarizations E = −∂tA, B = ∇ × A. This

gauge condition (constraint) exhibits the correct physical dof. However, it is frame de-

pendent since under a Lorentz Transform: Aµ(x) → A′µ(x) = Λµ
νA

ν(x) may not be

in the Coulomb gauge. In the new frame, we can do a gauge transformation back to

the Coulomb Gauge so Coulomb Gauge + gauge transformation = Coulomb Gauge in

any frame. E&M is covariant under Lorentz Transformation and gauge invariant for the

physical dof E,B.

The Coulomb Gauge with Jµ ̸= 0 with ∇ ·A = 0 and E = −∇A0 − ∂tA ⇒ ∇ · E =

−∇2A0 = ρ. The solution is

A0(r, t) =

∫
d3s

ρ(s, t)

|r− s|
, (1.60)

this implies A0(r, t) is not a dynamical variable but is completely determined by the

charge density ρ(r, t). This leads to the conclusion that there are only two dofs.

Another important gauge condition is the Landau/Lorenz gauge: ∂µA
µ = 0. The
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virtue of this gauge condition is that it is manifestly Lorentz invariant. In this gauge, the

ME become

∂νF
µν = −∂ν∂νAµ + ∂µ(∂νA

ν) = Jµ ⇒ −□Aµ = Jµ. (1.61)

Compatible with the LL gauge is

□(∂µA
µ) = 0 = ∂µJ

µ. (1.62)

The LL gauge leaves 3 dof (4Aµ − 1 constraint). However, LL doesn’t completely fix

the gauge since we can still perform gauge transformations Aµ → A′µ = Aµ + ∂µΛ so

that □Λ = 0. Such gauge transformation keeps A′µ in LL but represents a redundancy.

We can use this residual gauge transformation to get rid of one dof leaving two physical

dof as in the Coulomb Gauge. To see this, consider Jµ = 0 ⇒ □Aµ = 0, ∂µA
µ = 0. The

plane wave solutions are Aµ(x) = ϵµ(p)e−ip·x with p · p = 0. The LL enforces pµϵ
µ = 0

with pµ = (p0,−p) can write (since p2 = 0)

ϵµ(p) = a(p)pµ + b(p)ϵµ(1) + c(p)ϵµ(2), (1.63)

where ϵµ(1) = (0, ϵ̂(1)), ϵ
µ
(2) = (0, ϵ̂(2)) and ϵ̂1,2 are the transverse unit vectors that define

the Coulomb Gauge under a Gauge Transformation Aµ → A′µ = Aµ + ∂µΛ. In Fourier

Space:

Ãµ(p) → Ã′µ(p) = Ãµ(p) + pµΛ̃(p). (1.64)

We can fix Λ̃(p) to be −a(p) to cancel the pµ component of ϵµ. As a result, the

residual gauge transformation with Λ being a harmonic function (□Λ = 0) to get rid

of one dof leaving only the 2 physical dof in the Coulomb gauge. The advantage of

LL is that it is Lorentz Invariant and yields a simple equation of motion −□Aµ = Jµ

and ∂µA
µ = 0, but ”hides” the correct 2 physical dof. The Coulomb Gauge exhibits

explicitly the two physical dof: transverse polarizations. The action is invariant under

Gauge Transformations: under Aµ(x) → Aµ + ∂µΛ with Λ
|r|,t→∞−−−−→ 0. Thus from the

action
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S =

∫
d4x

[
−1

4
F µνFµν + JµAµ

]
, (1.65)

under the gauge transformation

S → S ′ =

∫
d4x

[
−1

4
F µνFµν + JµAµ + Jµ∂µΛ

]
. (1.66)

And the last term goes to zero under integration by parts as well as charge conserva-

tion. Moving back to the Coulomb Gauge where A0 = 0 ⇒ Ȧi = −Ei, the Hamiltonian

Density then becomes

H = Π0Ȧ0 − ΠiȦi − L =
1

2

(
E2 +B2

)
, (1.67)

where we used the fact that L = 1
2
(E2 −B2). The Hamiltonian then becomes

H =
1

2

∫
d3r
(
E2 +B2

)
. (1.68)

In the Coulomb Gauge (when Jµ = 0) □A = 0, A0 = 0. The particular solution

(called the normal modes) is Ai(x) = ϵi(p)e−ip·x which yields

Âi(r, t) =
1√
V

∑
p

2∑
λ=1

ϵiλ(p)√
2ωp

[
âp,λe

ip·x + â†p,λe
−ip·x

]
, (1.69)

where p · x = −ωpt + p · r, ωp = |p| and E = −∂tA, B = ∇×A, with ϵ̂1,2, defined

previously. The Hamiltonian then becomes

Ĥ =
∑
p

2∑
λ=1

(
â†p,λâp,λ +

1

2

)
, (1.70)

with the commutation relations[
âp,λ, â

†
q,ρ

]
= δpqδλρ, [â, â] =

[
â†, â†

]
= 0, âp,λ |0⟩ = 0, (1.71)

in which âp,λ annihilates a photon of momentum p and polarization λ and â†p,λ creates

a photon of p and polarization λ. We can then represent any Fock state with np,λ photons

of momentum p and polarization λ by

|np,λ⟩ =
(â†p,λ)

np,λ√
np,λ!

|0⟩ . (1.72)
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1.2.1 The Photon Propagator

Recall the Euler-Lagrange Equations for E&M

−∂νF µν = Jµ ⇒ ∂ν(−∂νAµ + ∂µAν) = Jµ ⇔ □Aµ − ∂µ(∂νA
ν) = Jµ. (1.73)

The photon Green’s Function/propagator will be used in Feynman calculus to obtain

gauge invariant observables, such as cross-sections or transition rates. Therefore we can

calculate in any gauge since the result is independent of such choices. Lets start with the

LL gauge: ∂νA
ν = 0 :

−□Aµ = Jµ. (1.74)

Now we introduce the Green’s function Gµν(x− y) that satisfies

−□xG
µν(x− y) = gµνδ(4)(x− y). (1.75)

Thus we can write the solution to the equations of motion by

Aµ(r, t) =

∫
d4y Gµν(x− y)Jν(y). (1.76)

Just as for the scalar field, introduce the 4D Fourier transform

Gµν(x− y) =

∫
d4p

(2π)4
eip·(x−y)G̃µν(p), δ(4)(x− y) =

∫
d4p

(2π)4
eip·(x−y). (1.77)

Fourier Transforming the differential equation for the Green’s function gives

p2G̃µν = gµν ⇒ G̃µν =
gµν

p2
. (1.78)

Again we need to specify the pole prescription:

(I) p0 → p0 − iϵ⇒ Advanced

(II) p0 → p0 + iϵ⇒ Retarded

(III) (p0)2 − p2 → (p0)2 − p2 + iϵ = p2 + iϵ⇒ Feynman.

This is the important GF to calculate cross sections etc. in Feynman calculus! Thus

the Green’s function is then
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G̃µν(p) =
gµν

p2 + iϵ
. (1.79)

The main results of the description with sources in the Coulomb Gauge are the fol-

lowing. ME in the Coulomb Gauge becomes

∇ · E = −∇2A0 = J0. (1.80)

A spatial Fourier Transform yields

Ã0(p) =
J̃0(p)

p2
⇒ G̃00 =

1

p2
. (1.81)

Next we have

−□A(r, t) = J(r, t) ⇒ Ã(p) =
1

p2 + iϵ
J̃(p), (1.82)

or it can also be written as

Ãi =
δij

p2 + iϵ
J̃j(p), (1.83)

where we’ve lowered the index j. Note that this only holds for ∇ ·A = 0. The other

components of the Green’s function in this gauge are

G̃0i = G̃i0 = 0, G̃ij =
δij

p2 + iϵ
, (1.84)

where i, j only correspond to components obeying p ·AT = p · JT = 0. Similarly to

the scalar field case, we can relate the time-ordered product to the Feynman propagator

of the photon〈
0
∣∣∣T (Âµ(r, t)Âν(s, τ))

∣∣∣0〉 ≡ iGµν
F (x− y) = i

∫
d4p

(2π)4
eip·(x−y) gµν

p2 + iε
. (1.85)

1.3 Dirac Spinor

Now we focus on massive Dirac spinors. We start off from the Dirac Lagrangian

L = ψ(i/∂ −m)ψ, (1.86)
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where ψ ≡ ψ†γ0. We work in the representation where,

γ0 =

12 0

0 −12

 , γi =

 0 σi

−σi 0

 . (1.87)

We vary ψ†, ψ independently ψ → ψ+ δψ , ψ† → ψ†+ δψ† with δψ , δψ† |r|,t→∞−−−−→ 0 and

ψ† = (ψ∗
1, ψ

∗
2, ψ

∗
3, ψ

∗
4). Let us consider

L = ψ†(i∂tψ + iαi∂iψ − βmψ
)
, (1.88)

where β = γ0 and αi = γ0γi as the Lagrangian and

S =

∫
d4xL, (1.89)

is the action. Under the variations ψ → ψ+ δψ , ψ† → ψ†+ δψ† and assuming δS = 0

to linear order, the variation ψ† → ψ† + δψ† gives us

δS =

∫
d4x δψ† [i∂tψ + iαi∂iψ − βmψ

]
= 0, (1.90)

and under the variation ψ → ψ + δψ we have

δS =

∫
d4xψ†[i∂t δψ + iαi∂i δψ

]
=

∫
d4x

[
−i∂tψ† − i∂jψ†αj − ψ†βm

]
δψ . (1.91)

This yields the equation of motion

(i/∂ −m)ψ = 0. (1.92)

The solutions of the Dirac Equation are 4-component Dirac spinors

ψ(r, t) = e−iEteip·r



ψ1

ψ2

ψ3

ψ4


≡

uA
uB

 , (1.93)

and the Dirac Equation
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(
iℏ∂t + iαi∂i − βm

)
ψ = 0. (1.94)

where uA and uB given by

uA =

ψ1

ψ2

 , uB =

ψ3

ψ4

 , (1.95)

are the two-component spinors just like in Non-Relativistic Quantum Mechanics of

spin-1/2 electrons. In the standard Dirac Representation(E −m)12 −piσi

−piσi (E +m)12


uA
uB

 = 0. (1.96)

This matrix equation yields two additional equations

(E −m)uA = (piσi)uB, (E +m)uB = (piσi)uA. (1.97)

Using the fact that (piσi)(p
jσj) = p2 by multiplying the leftmost equation by (σ⃗ · p⃗)

(as well as using the rightmost equation), we get the dispersion relation

E2 − p2 = m2 ⇒ E = ±
√

p2 +m2. (1.98)

We therefore have two solutions for the energy. With this knowledge we can solve for

uB in terms of uA to get

uB =
piσi
E +m

uA
p→0−−→ 0. (1.99)

Thus, we have two independent two-component spinors

uA =

1
0

 , uB =

0
1

 , (1.100)

for the positive energy solution taking the form

u1,2 = N

 uA

piσi

E+mc2
uA

 , (1.101)
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where uA are the two component spinors defined previously. The negative energy

solutions E = −
√

p2 +m2 of the Dirac Equation can be found in a similar way

uA = − piσi
|E|+m

uB
p→0−−→ 0, (1.102)

where E = −|E|. We get the same two linearly independent spinors with the 4

component spinors being

u3,4 = N

− piσi

|E|+m
uB

uB

 , (1.103)

where

u3 =

1
0

 , u4 =

0
1

 . (1.104)

For p = 0 (the rest frame of the electron) we get

u1 =



1

0

0

0


, u2 =



0

1

0

0


, u3 =



0

0

1

0


, u4 =



0

0

0

1


, (1.105)

where u1 is the positive energy spin up in the rest frame of the electron (spin along

z-axis which would therefore make the two-component spinor to be an eigenvector of σz),

u2 is the spin down positive energy spinor along the z-axis, u3 is the negative energy spin

up spinor and u4 is the negative energy spin down spinor.

Dirac realized that the negative energy solutions correspond to anti-particles

piσi =

 pz px − ipy

px + ipy −pz

 . (1.106)

It is convenient to define the 4 solutions as
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u1(p) = Np



1
0


piσi

|E|+m

1
0




= Np



1

0

pz
|E|+m

(px+ipy)

|E|+m


, (1.107)

u2(p) = Np



0
1


piσi

|E|+m

0
1




= Np



0

1

px−ipy
|E|+m

−pz
|E|+m


. (1.108)

For E = −|E|, we write

v1(p) = u4(−p) = Np



piσi

|E|+m

0
1

0
1




= Np



px−ipy
|E|+m

−pz
|E|+m

0

1


, (1.109)

v2(p) = u3(−p) = −Np



piσi

|E|+m

1
0

1
0




= Np



pz
|E|+m

px+ipy
|E|+m

1

0


, (1.110)

where we normalize our solutions by

u†AuB = v†AvB = 2|E|δAB, (1.111)

where u† = (u∗1, u
∗
2, u

∗
3, u

∗
4). Further more, it is straightforward to prove that

u†A(p)vB(−p) = 0, (1.112)

for A,B = 1, 2. The normalization condition yields

N 2
p

(
1 +

p2

(|E|+m)2

)
= 2|E| ⇒ Np =

√
|E|+m. (1.113)
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The 4 ”canonical” solutions u1(p), u2(p), v1(p), v2(p) form a complete set of solutions

to the Dirac Equation.

Current Conservation Writing the equations

i∂tψ = (−iαi∂i + βm)ψ, i∂tψ
† = i∂jψ

†αj + ψ†βm, (1.114)

then multiplying the first equation by ψ† and the second equation by ψ and subtracting

them we get

i∂t(ψ
†ψ) = i∂i(ψ

†αiψ). (1.115)

Define the Dirac charge density and current as

ρ ≡ ψ†ψ, J i ≡ ψ†αiψ ⇒ ∂tρ+∇ · J = 0 ⇔ ∂µJ
µ, (1.116)

where Jµ = (ρ,J). Now we can define ψ ≡ ψ†γ0 which frees us up to write ψ†αiψ =

ψγ0αiψ which yields ρ = ψγ0ψ, J i = ψγiψ thus

Jµ = ψγµψ. (1.117)

The Lagrangian is invariant under global gauge transformation ψ(x) → eiθψ(x), ψ†(x) →

ψ†(x)e−iθ where θ ∈ R. Consider the infinitesimal variation δψ = iθψ, δψ† = −iψ†θ.

From Noether’s Theorem we can construct the current

Jµ =
∂L

∂(∂µψ)
δψ +

∂L
∂(∂µψ†)

δψ† =
∂L

∂(∂µψ)
δψ = ψγµψ, (1.118)

which is conserved. A result previously obtained from the Dirac Equation. We can

also see that under a Lorentz Transformation ψ → ψS−1, ψ → Sψ which implies

Jµ → ψS−1γµSψ = ψΛµ
νγ

νψ = Λµ
νJ

ν . (1.119)

And so we can conclude that Jµ transforms as a contravariant 4-vector.
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1.4 Quantization

Since ψ(x) is a complex field, the most general solution of the Dirac Equation is a complex

linear superposition of particular solutions

ψ̂(r, t) =
1√
V

2∑
A=1

∑
p

1√
Ep

(b̂pAuA(p)e
ip·x + d̂†pAvA(p)e

−ip·x). (1.120)

The factor of (2Ep)
−1/2 is there because we normalized the spinors u, v such that

u†u = v†v = 2|Ep|, Ep =
√

p2 +m2, b̂pA, d̂
†
pA are the generalized Fourier coefficients.

Using the equations

δpq =
1

V

∫
d3r exp(i(p− q) · r), (1.121)

(αipi + βm)uA(p) = EpuA(p), (1.122)

(−αipi + βm)vA(p) = −EpvA(p), (1.123)

u†A · uB = v†A · vB = 2EpδAB, u†A(p)vB(−p) = v†B(p)uA(p) = 0, (1.124)

we get the Hamiltonian to be

Ĥ =

∫
d3r ψ̂†(r, t)

[
−iαi∂i + βm

]
ψ̂(r, t) =

∑
p,A

Ep

[
b̂†pAb̂pA − d̂pAd̂

†
pA

]
, (1.125)

the momentum is

P̂ =
∑
p,A

p[b̂†pAb̂pA − d̂pAd̂
†
pA], (1.126)

and the charge is

Q̂ =

∫
d3r Ĵ0(r, t) =

∫
d3r ψ̂†(x)ψ̂(x) =

∑
p,A

[
b̂†pAb̂pA + d̂pAd̂

†
pA

]
. (1.127)

Can we impose canonical commutation relations as for Klein Gordon fields? Doing so

leaves us with [
d̂pA, d̂

†
qB

]
= δpqδAB ⇒ d̂pAd̂

†
pA = 1 + d̂†pAd̂pA, (1.128)
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which alters the form of the Hamiltonian by

Ĥ =
∑
p,A

Ep

[
b̂†pAb̂pA − d̂†pAd̂pA − 1

]
, (1.129)

and we get a negative zero point energy. Because of the (-) sign, we can lower the

energy by allowing more quanta of negative energy. This implies that the energy is un-

bounded from below which yields an unstable ground state. To obtain a well defined

ground state, we must instead impose anti-commutation relations on the Fourier coeffi-

cients

{
b̂pA, b̂

†
qB

}
=
{
d̂pA, d̂

†
qB

}
= δpqδAB,

{
b̂, b̂
}
=
{
d̂, d̂
}
=
{
b̂†, d̂†

}
=
{
b̂, d̂†

}
= 0.

(1.130)

Now we have d̂pAd̂
†
pA = −d̂†pAd̂pA + 1 which when plugged into the Hamiltonian

becomes

Ĥ =
∑
p,A

Ep

[
b̂†pAb̂pA + d̂†pAd̂pA

]
− 2

∑
p

Ep, (1.131)

where the 2 results from us doing the A sum. Therefore the ground state |0⟩ leaves

b̂pA |0⟩ = d̂pA |0⟩ = 0, (1.132)

where we’ve promoted the Fourier coefficients to creation and annihilation operators.

1.4.1 Field Operators

The Dirac field operator is (plane wave normalized)

ψ̂(r, t) =
1√
V

∑
p

2∑
A=1

1√
2Ep

[
b̂pAuA(p)e

ip·x + d̂†pAv
†
A(p)e

−ip·x
]
, (1.133)

ψ̂†(r, t) =
1√
V

∑
p

2∑
A=1

1√
2Ep

[
b̂†pAu

†
A(p)e

−ip·x + d̂pAvA(p)e
ip·x
]
. (1.134)

ψ and ψ† are 4-component spinors and obey the equal time anti-commutation relations

{
ψ̂A(r, t), ψ̂

†
B(s, t)

}
= δABδ

(3)(r− s),
[
ψ̂A, ψ̂B

]
=
{
ψ̂†
A, ψ̂

†
B

}
= 0. (1.135)
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1.5 Spin Statistics Theorem

For scalar fields (spin 0), photons and massive vector bosons (spin 1), quantization is

carried out by imposing commutation relations. These yield a Hamiltonian bounded

from below (and are therefore stable) with a well-defined ground state

Ĥ =
∑
p,λ

Ep

(
â†pλâpλ +

1

2

)
. (1.136)

For spin-1/2 particles, we must quantize with anti-commutation relations to define a

ground state and a Hamiltonian bounded from below with

Ĥ =
∑
p,A

Ep

[
b̂†pAb̂pA + d̂†pAd̂pA

]
+ zero point energy, (1.137)

Excitations are created by b̂†, d̂† and obey the Pauli Exclusion Principle as a result of

the anti-commutator relations.

1.5.1 Spin Statistics

Integer spin fields (particles) with s = 0, 1, . . . must be quantized with canonical commu-

tation relations. These particles are bosons and they are symmetric under an exchange

of pairs â†pλâ
†
qρ = â†qρâ

†
pλ (from

[
â†, â†

]
= 0). The consequences: the lowest energy

N− particle state is a Bose Einstein Condensate (BEC). Half-odd integer spin parti-

cles s = 1/2, 3/2, . . . are fermions (Fermi-Dirac Statistics) and must be quantized with

anti-commutation relations: particles states are anti-symmetric under pairwise exchange

b̂†pαb̂
†
qβ = −b̂†qβ b̂†pα (from

{
b†, b†

}
= 0) which results in the Pauli Exclusion Principle.

The spin statistics theorem is proven rigorously in Lorentz invariant relativistic the-

ories with local Lagrangian densities, obeying micro-causality. In fermionic theories,

bilinear operators (e.g. charge, density ψ†ψ) must commute for space-like intervals! The

non-relativistic limit and anti-commuting Fermi fields. The Non Relativistic limit corre-

sponds to the kinetic energy ≪ rest energy ⇔ p2 ≪ m4 ⇒ Ep ≃ m.
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1.5.2 Time-Ordered Product for Fermions

For fermion (anti-commuting) operators a(x), b(y), the time-ordered product is defined

as

T (a(x)b(y)) = a(x)b(y)Θ(t− τ)− b(y)a(x)Θ(τ − t), (1.138)

where the minus sign is there because of the anti-commuting nature of the fermion

fields. As a consequence of this we have

T (a(x)b(y)) = −T (b(y)a(x)). (1.139)

Now consider
〈
0
∣∣∣T (ψ̂B(x)ψ̂C(y)

)∣∣∣0〉 with ψ̂ ∼ b̂u + d̂†v, ψ̂ = ψ̂†γ0, and b̂ |0⟩ =

d̂ |0⟩ = 0. Since (i/∂x −m)ψ(x) = 0, we can apply the Dirac operator to the time ordered

product to get

(i/∂x −m)
〈
0
∣∣∣T (ψ̂B(x)ψ̂C(y)

)∣∣∣0〉 = (iγ0∂t + iγi∂i,x −m)AB

[〈
0
∣∣∣T (ψ̂B(x)ψ̂C(y)

)∣∣∣0〉Θ(t− τ)

−
〈
0
∣∣∣T (ψ̂C(y)ψ̂B(x)

)∣∣∣0〉Θ(τ − t)
]
.

(1.140)

Using the fact that

∂tΘ(t− τ) = δ(t− τ), ∂tΘ(τ − t) = −δ(τ − t), (1.141)

1.140 reduces down to

γ0AB

(〈
0
∣∣∣ψ̂B(x)ψ̂C(y)

∣∣∣0〉+
〈
0
∣∣∣ψ̂C(y)ψ̂B(x)

∣∣∣0〉)δ(t− τ). (1.142)

With ψ̂C(y) = ψ̂†
Dγ

0
CD ⇒ the iγ0∂t acting on the Θ-functions yields

iγ0ABγ
0
BC

〈
0
∣∣∣{ψ̂B(x), ψ̂

†
C(y)

}∣∣∣0〉 δ(t− τ) = iγ0ABγ
0
BCδ

(3)(r− s)δ(t− τ) (1.143)

= iδABδ
(3)(r− s)δ(t− τ). (1.144)

Thus when the Dirac operator acts on ψ̂(x) such that (/∂ −m)ABψ̂B(x) = 0 we get

27



(i/∂ −m)AB

〈
0
∣∣∣T (ψ̂B(x)ψ̂C(y)

)∣∣∣0〉 = iδABδ
(4)(x− y). (1.145)

Comparing to S̃AB we have

〈
0
∣∣∣T (ψ̂B(x)ψ̂C(y)

)∣∣∣0〉 = iSBC(x− y), (1.146)

which is the Feynman time-ordered product/Green’s function for fermions.

2 Interaction Picture

Now we are ready to deal with interactions. In the presence of interactions in the

Schrodinger picture, states evolve as |ψ(t)⟩ = e−iĤ(t−ti) |ψ(ti)⟩ with Ĥ = Ĥ0 + Ĥint.

A large part of the time evolution is ”free” corresponding to a phase that doesn’t affect

the transition probability. The interaction picture removes this trivial phase as follows:

the total time evolution operator is

e−iĤ(t−ti) = e−iĤ0tÛ(t; ti)e
iĤ0t ⇒ Û(t; ti) = eiĤ0teiĤ(t−ti)e−iĤ0t, (2.1)

within the interaction picture. This operator is unitary i.e. Û †Û = 1. Consider

an initial and final state |i⟩ , |f⟩ as Fock states which are also eigenstates of H0 with

eigenvalues Ei, Ef respectively. Then the transition amplitude can be expressed as

Ai→f = ⟨f |e−iĤ(tf−ti)|i⟩ = ⟨f |e−iĤ0tÛ(tf ; ti)e
iĤ0t|i⟩ = e−i(Ef tf−Eiti) ⟨f |Û(tf ; ti)|i⟩ (2.2)

⇒ |Ai→f |2 = Pi→f = | ⟨f |Û(tf ; ti)|i⟩ |2. (2.3)

The transition probability only depends on the time evolution operator in the interac-

tion picture with Û(ti; ti) = 1. So what is Û(t, ti)? If [H0, Hint] ̸= 0, then the exponentials

can’t be combined into a single exponential. Restore ℏ and consider
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iℏ∂tÛ(t; ti) = iℏ∂t
[
e

iĤ0t
ℏ e−

i
ℏ Ĥ(t−ti)e−

i
ℏ Ĥ0ti

]
= iℏ

[
iĤ0

ℏ
Û(t; ti)−

i

ℏ
e

iĤ0t
ℏ Ĥe−

i
ℏ Ĥ0te

i
ℏ Ĥ0te

i
ℏ Ĥ(t−ti)e−

i
ℏ Ĥ0ti

]
(2.4)

= iℏ
[
i

ℏ
Ĥ0Û(t; ti)−

i

ℏ

(
e

i
ℏ Ĥ0tĤe−

i
ℏ Ĥ0t

)
Û(t; ti)

]
(2.5)

= e
i
ℏ Ĥ0tĤinte

− i
ℏ Ĥ0tÛ(t; ti) ≡ ĤI(t)Û(t; ti).

(2.6)

where we regard ĤI(t) as the interaction Hamiltonian in the interaction picture i.e.

the Heisenberg picture of ”free fields”. Thus the time evolution operator satisfies the

following equation

∂Û

∂t
= − i

ℏ
ĤI(t)Û(t; ti), Û(ti; ti) = 1, ĤI(t) = e

i
ℏ Ĥ0tĤinte

− i
ℏ Ĥ0t. (2.7)

Thus in this interaction Hamiltonian, the fields feature the free field time evolution as

in the Heisenberg picture without interactions. In the interaction picture, states evolve in

time via the interaction of operators that evolve in time with the free field time evolution.

For example in QED we have

HI = e

∫
ψ /Aψ d3r , HI(t) = e

∫
d3r ψ(r, t) /A(r, t)ψ(r, t), (2.8)

where ψ, ψ,A are all free fields. The solution to the evolution equation for the time

evolution operator is

Û(t; ti) = 1− i

ℏ

∫ t

ti

ĤI(t1)Û(t1; ti) dt1 . (2.9)

Since ĤI depends on a coupling (for QED the coupling is e) assumed small, we can

give the solution as a power series expansion in this coupling by iteration: replace

Û(t1; ti) = 1−
∫ t1

ti

dt2 ĤI(t2)Û(t2; ti)

⇒ Û(t; ti) = 1− i

ℏ

∫ t

ti

dt1 ĤI(t1) +

(
−i
ℏ

)2 ∫ t1

ti

dt1

∫ t2

ti

dt2 ĤI(t2)ĤI(t1)Û(t2; ti),

(2.10)
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and we can express the very last term as

Û(t2; ti) = 1− i

ℏ

∫ t2

ti

dt3 ĤI(t3)Û(t3; ti), (2.11)

which means we can write

Û(t; ti) = 1− i

ℏ

∫ t

ti

dt1 ĤI(t1) +

(
−i
ℏ

)2 ∫ t

ti

dt1

∫ t1

ti

dt2 ĤI(t1)ĤI(t2)

+

(
−i
ℏ

)3 ∫ t

ti

dt1

∫ t1

ti

dt2

∫ t2

ti

dt3 ĤI(t1)ĤI(t2)ĤI(t3) + . . .

(2.12)

This is a power series expansion in ĤI (proportional to coupling) as time-ordered

integrals: ĤI(t1)ĤI(t2)ĤI(t3) · · · with t1 > t2 > t3 > . . ..

In a scattering experiment, the initial state is prepared well before the scattering

events (far in the past) i.e. ti → −∞ and the final state is measured at a detector a few

meters away from the collision region, well after the scattering event. For example, at

the LHC, particles travel ∼ 10 km before colliding and detectors are ∼ 10 meters away

from the collision region and particles move with v/c ≈ 1. This makes ti ∼ 10−5 s, tf ∼

10−8 s but the collision ”time” ∼ of a proton/c ≈ 10−28 s which means we can safely set

ti → −∞, tf → ∞ and we thus need S = Û(∞,−∞) which is defined to be the S-matrix

Sfi ≡ ⟨f |Û(∞,−∞)|i⟩ which we can write as

Û(∞,−∞) = 1− i

ℏ

∫ ∞

−∞
dt1 ĤI(t1) +

(
−i
ℏ

)2 ∫ ∞

−∞
dt1

∫ t1

−∞
dt2 ĤI(t1)ĤI(t2)

+

(
−i
ℏ

)3 ∫ ∞

−∞
dt1

∫ t1

ti

dt2

∫ t2

ti

dt3 ĤI(t1)ĤI(t2)ĤI(t3) + . . . .

(2.13)

Now we look at the 2nd order term and write it as

I =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Θ(t1 − t2)ĤI(t2). (2.14)

Since t1, t2 are dummy variables, we can relabel them freely t1 ↔ t2 which brings the

integral to the new form

I =
1

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 [ĤI(t1)ĤI(t2)Θ(t1 − t2) + ĤI(t2)ĤI(t1)Θ(t2 − t1)] (2.15)

=
1

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T (ĤI(t1)ĤI(t2)). (2.16)
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This analysis can be done to all orders i.e.

Û(∞,−∞) = 1− i

ℏ

∫ ∞

−∞
dt1 ĤI(t1) +

1

2!

(
−i
ℏ

)2 ∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T (ĤI(t1)ĤI(t2))

+
1

3!

(
−i
ℏ

)3 ∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dt3 T (ĤI(t1)ĤI(t2)ĤI(t3)) + . . . ≡ T

(
e−

i
ℏ
∫∞
−∞dtĤI(t)

)
,

(2.17)

where here we regard T to be the time-ordering symbol. This inspires us to express

the S-matrix element (henceforth the matrix element) as

Sfi =

〈
f

∣∣∣∣T (exp(− i

ℏ

∫ ∞

−∞
dt ĤI(t)

))∣∣∣∣i〉 , (2.18)

and S = Û(∞,−∞) = T
(
e−

i
ℏ
∫∞
−∞dtĤI(t)

)
is the full S-matrix. This is the essential

ingredient in decay rates and cross sections by featuring a power series expansion in the

couplings

Û(∞,−∞) = 1+ Û (1)(∞,−∞) + Û (2)(∞,−∞) + . . . , (2.19)

where Û (1) ∼ O(e), Û (2) ∼ O(e2) and so on. As a result, the S-matrix is Lorentz

and gauge invariant (for relativistic Lorentz invariant Lagrange densities) even when it

involves the Hamiltonian.

2.1 2→2 Processes

Consider the theory of two real scalars ϕ, χ with Lint = −λϕ2χ2 and Hi = λ
∫
d3r ϕ2χ2,

the vertex is now

ϕ

ϕ

χ

χ

We focus on this case because it is instructive on the general processes and techniques

for all interactions of this form. Let us study the following processes: annihilation ϕϕ→

χχ and scattering ϕχ→ ϕχ. In the interaction picture
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ϕ̂(x) =
1√
V

∑
p

1√
2Eϕ

p

[
âpe

ip·x + â†pe
−ip·x], χ̂(x) =

1√
V

∑
q

1√
2Eχ

q

[
b̂qe

iq·x + b̂†qe
−iq·x

]
,

(2.20)

the initial state is
∣∣ζϕp1 , ζϕp2〉 and the final state is

∣∣ζχq1 , ζχq2〉. This process features a

1st order contribution ⟨f |Û (1)(R)|i⟩ = −iλ
∫
R4 d

4x ⟨f |ϕ̂2χ̂2|i⟩. We need to destroy the

initial state
∣∣ζϕp1 , ζϕp2〉 → |0⟩ and create the final state out of the vacuum

∣∣ζχq1 , ζχq2〉 so it

has overlap with ⟨f |. The relevant term from ϕ̂2 is

∑
k1,k2

1√
2VEϕ

k1
2VEϕ

k2

[
âk1 âk2e

i(k1+k2)·x
]
, (2.21)

because we need to annihilate both particles from |i⟩ which means we need two terms

k1 = p1, k2 = p2. Now we also need to create
∣∣ζχq1 , ζχq2〉 so the relevant χ̂2 term is

∑
k1,k2

1√
2VEχ

k1
2VEχ

k2

[
b̂k1 b̂k2e

−i(k1+k2)·x
]
, (2.22)

and we need the two terms k1 = q1, k2 = q2 and k1 = q2, k2 = q1. Creating
∣∣ζχq1 , ζχq2〉

which now has
〈
f
∣∣ζχq1 , ζχq2〉 = 1 implies the S-matrix element is

Sfi = 2× 2λ

∫
d4x

ei(p1+p2−q1−q2)·x

(2VEϕ
p12VEϕ

p22VEχ
q12VEχ

q2)1/2
, (2.23)

where the first factor of 2 is from destroying the initial state and the second factor of

2 is from creating the final state. This leaves the S-matrix element to the form

Sfi =

[
2∏

i=1

(2VEϕ
pi
)−1/2

2∏
i=1

(2VEχ
qi
)−1/2

][
(2π)4δ(4)

(∑
i

pi −
∑
f

qf

)
Mfi

]
, (2.24)

where the products serve as normalization factors and the delta function enforces

energy and momentum conservation. This the main result for 2→2 processes. The

scattering amplitude Mfi only depends on the particular interaction vertex and not on

the normalizations of E/p conservation. For ϕϕ→ χχ, Mfi = 4λ. For λϕ2χ2 scattering

process ϕχ→ ϕχ we have |i⟩ =
∣∣ζϕp1 , ζχq1〉 , |f⟩ = ∣∣ζϕp2 , ζχq2〉

The ϕ̂2 terms that are important in destroying the initial state and creating the final

state are
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ϕ

χ

ϕ

χ

2
∑
k1,k2

1√
2VEϕ

k1
2VEϕ

k2

[
â†k1

âk2e
i(k1−k2)·x

]
, (2.25)

where the factor of 2 is due to there being two terms i.e. ϕ̂2 ∼ (â+ â†)(â+ â†) ∼ ââ†.

Similarly for χ̂2, the relevant terms are

2
∑
k1,k2

1√
2VEχ

k1
2VEχ

k2

[
b̂†k1
b̂k2e

i(k1−k2)·x
]
, (2.26)

to destroy
∣∣ζχq1〉 and create

∣∣ζχq2〉 to overlap with ⟨f | to get

Sfi = 2× 2λ

∫
d4x

ei(p1+q1−p2−q2)·x

(2VEϕ
p12VEϕ

p22VEχ
q12VEχ

q2)1/2
(2.27)

=

[
2∏

i=1

(2VEϕ
pi
)−1/2

2∏
i=1

(2VEχ
qi
)−1/2

][
(2π)4δ(4)

(∑
i

pi −
∑
f

qf

)
Mfi

]
. (2.28)

We can see that

|Sfi|2 =
|Mfi|2

V4

[(2π)4δ(4)(p+ q1 − p2 − q2)]
2

2Eϕ
p12E

ϕ
p22E

χ
q12E

χ
q2

. (2.29)

What is [(2π)4δ(4)(p1 + q1 − p2 − q2)]
2? Because

(2π)4δ(4)(p1+q1−p2−q2) =
∫

d4x ei(p1+q1−p2−q2)·x ⇒ (2π)4δ(4)(p1+q1−p2−q2)
∫

d4x ei(p1+q1−p2−q2)·x.

(2.30)

Since δ(4)(p1 + q1 − p2 − q2) is only nonzero for when p1 + q1 − p2 − q2 = 0, we set

p1 + q1 − p2 − q2 in the integral and write
∫
d4x ≡ VT which is the total volume of

spacetime. This leaves us with the transition probability per unit time

Pi→f

T
=

1

V3

(2π)4δ(4)(p1 + q1 − p2 − q2)|Mfi|2

2Eϕ
p12E

ϕ
p22E

χ
q12E

χ
q2

. (2.31)

Thus the total probability per unit time is given by the sum over all final states and
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we also use
∑

p

∑
q → V

∫ d3p2
(2π)3

V
∫ d3q2
(2π)3

. We must include a symmetry factor S̃ to

account for indistinguishability in the final state (in this case S̃ = 1 but for 2 identical

particles S̃ = 1
2!
). We then have

P tot
i→f

T
=

S̃

4Eϕ
p1E

χ
q1V

∫
d3p2

(2π)32Eϕ
p2

∫
d3q2

(2π)32Eχ
q2

|Mfi|2(2π)4δ(4)(p1 + q1 − p2 − q2). (2.32)

2.1.1 Cross Sections

Let A be an incident particle and B be the target with relative velocity vrel. The incident

beam features a number density nA = NA

V . Consider a cross-sectional area ∆a ⊥ to the

incident beam

Figure 11: Cylinder of vol-
ume vrel∆t∆a.

In a time ∆T , the number of A−particles passing

through the area ∆a is ∆NA = nA(vrel∆t)∆a where

(vrel∆t)∆a is the volume of particles passing through the

cross sectional area ∆a in a time ∆t.

The flux F , is the number of particles passing per unit

area per unit time given by

F =
nAvrel∆t∆a

∆a∆t
= nAvrel. (2.33)

If the target presents an effective cross-sectional area σ to the incoming beam then

all particles within σ will be scattered off the beam

Figure 12: The incom-
ing beam of particles as it
comes into contact with the
effective cross sectional area
σ. Particles that fall inside
the cross sectional area scat-
ter off the surface while par-
ticles not in the line of sight
stream freely due to the lack
of contact,

where σ is approximately the interaction area between

incident and target particles. As a result, the number of

A-particles scattered off the particles per unit time is equal

to the number of incident (A) per unit area per unit time

×σ i.e. Fσ. But this is the probability per unit time for

the incident particles to transition to a final state

Fσ =
Pi→f

T
⇒ σ =

Pi→f

T
=

1

F
. (2.34)

Now the cross section is defined for a single particle i.e.

nA = 1/V which leads to
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σ =

(
V
vrel

)(
Pi→f

T

)
. (2.35)

Plugging in the result for the probability per unit time gives us

σ =
S̃

4E1E2vrel

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

|Mfi|2∗(2π)4δ(4)(p1 + p2 − p3 − p4), (2.36)

Figure 13: 2→2 where the particles in the initial state |i⟩ start with momenta p1, p2 and
end in the final state |f⟩ with momenta p3, p4.

where we’ve renamed q1 → p2, p2 → −p3, q2 → p4. Recall
d3p

(2π)32Ep

is the Lorentz

invariant phase space (LIPS) and for collinear scattering

E1E2vrel =
√

(p1 · p2)2 −m2
1m

2
2, (2.37)

and in the Center of Mass p2 = −p1.

Figure 14: 2→2 scattering in the center of mass frame. The initial momenta of particles
1 and 2 are collinear as well as the final momenta of particles 3 and 4. However, particles
3 and 4 are scattering off an angle with respect to the initial particles.

Thus in the center of mass frame, E1E2vrel = |p1|(E1 + E2) where E1 + E2 represent

the total energy in the center of mass. Scattering in the center of mass frame can be

depicted as

Now given that
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Figure 15: Scattering in the center of mass frame.

(p1 · p2)2 − (m1m2)
2 = |pi|(E1 + E2), (2.38)

and recognizing that δ(4)(p1+p2−p3−p4) = δ(E1+E2−E3−E4)δ
(3)(p1+p2−p3−p4)

and that p1 + p2 = 0 means that the cross section is

σ =
S̃

(8π)2|pi|(E1 + E2)

∫
d3pf
E3E4

δ(E1 + E2 − E3 − E4)|Mfi|2p3=−pf
. (2.39)

Using d3pf = p2f dpf dΩ , dΩ = 2π d cos θ and E1 + E2 = E3 + E4 = Etot =
√
s where

s = (p1 + p2)
2 = (E1 +E2)

2 in the center of mass. Thus we express the differential cross

section

dσ

dΩ

∣∣∣∣
CM

=
S̃

(8π)2|pi|Etot

∫ ∞

0

p2f |Mfi|2δ(Etot − (E3 + E4))√
p2f +m2

3

√
p2f +m2

4

. (2.40)

We define x ≡
√
p2f +m2

3 +
√
p2f +m2

4 ⇒ pf = pf (x) ⇒

dx

dpf
= pf

 1√
p2f +m2

3

+
1√

p2f +m2
4

 =
pf (x)x√

p2f +m2
3

√
p2f +m2

4

⇔ pf dpf√
p2f +m2

3

√
p2f +m2

4

=
dx

x
.

(2.41)

We also see that at pf = 0, x = m3 + m4 which when plugged into the differential

cross section we get

dσ

dΩ

∣∣∣∣
CM

=
S̃

(8π)2Etot|pi|

∫ ∞

m3+m4

pf (x)|Mfi|2δ(Etot − x)
dx

x
, (2.42)

where we label m3+m4 as the threshold for the reaction. Now in order for δ(Etot−x)

to have support in the integration region then we must have Etot > m3+m4 which leaves

dσ

dΩ
=

S̃

(8π)2
p∗f

|pi|E2
tot

|Mfi|2∗Θ(Etot − (m3 +m4)), (2.43)
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where the * means it is evaluated at p3 = −p4 = −pf and p∗f is determined by

Etot ≡ ET =
√

(p∗f )
2 +m2

3+
√

(p∗f )
2 +m2

4 ⇔ p∗f =
1

2ET

√
[E2

T − (m3 −m4)2][E2
T − (m3 +m4)2].

(2.44)

The reaction threshold corresponds to when ET = m3+m4 ⇒ p∗f = 0 i.e. the collision

products are at rest in the Center of Mass frame.

2.2 Scalar QED

Start with the Lagrangian for the complex Klein-Gordon Equation

L = −∂µΦ†∂µΦ−M2Φ†Φ, (2.45)

and recall that the theory is invariant under a global U(1)-gauge symmetry Φ → eiθΦ.

Next we promote this spacetime constant to a spacetime-varying field θ = θ(r, t). We see

that the gauge symmetry has been spoiled

L′ = −∂µΦ†∂µΦ− Φ†ΦM2 − i∂µθ(Φ∂
µΦ† − Φ†∂µΦ)− Φ†Φ∂µθ∂

µθ. (2.46)

To restore the gauge symmetry, we must find a way to cancel out all the θ terms.

Fortunately we know that under a gauge transformation, gauge fields, specifically the

4-potential from E&M, transforms via Aµ → Aµ +
1
e
∂µθ. Express the new Lagrangian by

L = −(DµΦ)
†DµΦ−M2Φ†Φ, (2.47)

where Dµ = ∂µ − ieAµ is the covariant derivative and e is the elementary charge

coupling constant. This gives us a new local gauge symmetry for which we want L to be

invariant. To that we write

DµΦ(x) = (∂µΦ−ieΦAµ) → eiθ(x)DµΦ(x), (DµΦ(x))
† = (∂µΦ

†+ieΦ†Aµ) → (DµΦ(x))
†e−iθ(x),

(2.48)

and thus the Lagrangian

L = −(DµΦ)
†(DµΦ)−M2Φ†Φ (2.49)
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is gauge invariant sinceM2Φ†Φ is explicitly gauge invariant. Now that we have a new

field Aµ, we can also add its own dynamics i.e. a kinetic term

L = −(∂µΦ
† + ieAµΦ

†)(∂µΦ− ieAµΦ)−M2Φ†Φ− 1

4
F µνFµν . (2.50)

Let’s calculate the 2→2 scattering process: Φγ → Φγ i.e. Compton scattering.

Φ = , Aµ =

We are interested in the following (tree-level) diagrams:

Φ

A

Φ

A

qi qf +

Φ

A

Φ

A

pi

qi
Φ

pf

qf +

Φ

A

Φ

A

pi

qf

pf

The interaction Lagrangian is

Lint = −e2AµAµΦ
†Φ− ieAµ(Φ†∂µΦ− Φ∂µΦ

†). (2.51)

Let’s calculate the amplitude for the first (and easiest) interaction. The initial state is

|i⟩ = |Φ, γ⟩ and the final state is |f⟩ = |Φ, γ⟩. For the initial state, we need the operators

Φ̂ → âpie
ipi·x√

2VEpi

, γ → âqiλϵie
iqi·x√

2Vωqi

,

and the final state is

Φ̂† →
â†pf e

−ipf ·x√
2VEpf

, γ →
â†qfλϵfe

−iqf ·x√
2Vωqf

.

Thus the S-matrix element for this process is
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Sfi = (−i)(−e2)
∫

d4x
〈
f
∣∣∣T (ÂµÂµΦ̂

†Φ̂)
∣∣∣i〉 (2.52)

= ie2
∫

d4x
eipi·x√
2VEpi

eiqi·x√
2Vωqi

e−ipf ·x√
2VEpf

e−iqf ·x√
2Vωqf

ϵµi ϵµ,f (2.53)

=
ie2ϵi · ϵf√

2VEpi
2Vωqi

2VEpf
2Vωqf

∫
d4x ei(pi+qi−pf−qf )·x (2.54)

=
(2π)4δ(4)(pi + qi − pf − qf )Mfi√

2VEpi
2Vωqi

2VEpf
2Vωqf

, (2.55)

whereMfi = ie2ϵi·ϵf . There is also the diagram where we swap the legs for the photon

external lines but since that amplitude is identical to this one, the total contribution to

the amplitude is iMfi = −2e2ϵi · ϵf . Now we can focus on the second interaction term,

however this will require much more care. The S-matrix element looks like

Sfi =
(−i)2(−ie)2

2!

∫
d4x

∫
d4y Aµ(x)Aν(y)[Φ†(x)∂µΦ(x)− Φ(x)∂µΦ

†(x)][Φ†(y)∂νΦ(y)− Φ(y)∂νΦ
†(y)].

(2.56)

We can get rid of the factor of 2 in the denominator since this integral is symmetric

in x, y. Now because the initial and final state are the same in the previous diagram, we

require the use of the same operators

Φ̂ → âpie
ipi·x√

2VEpi

, γ → âqiλϵie
iqi·x√

2Vωqi

, Φ̂† →
â†pf e

−ipf ·x√
2VEpf

, γ →
â†qfλϵfe

−iqf ·x√
2Vωqf

.

The S-matrix is then

Sfi = e2
∫

d4x

∫
d4y

[(
eipi·x√
2VEpi

)(
ϵµi e

iqi·x√
2Vωqi

)(
(−ipν,f )e−ipf ·y√

2VEpf

)(
ϵνfe

−iqf ·y√
2Vωqf

)〈
0
∣∣T (∂µΦ

†Φ)
∣∣0〉

−

(
eipi·x√
2VEpi

)(
ϵµi e

iqi·x√
2Vωqi

)(
e−ipf ·y√
2VEpf

)(
ϵνfe

−iqf ·y√
2Vωqf

)〈
0
∣∣T (∂µΦ

†∂νΦ)
∣∣0〉

−

(
(ipµ,i)e

ipi·x√
2VEpi

)(
ϵµi e

iqi·x√
2Vωqi

)(
(−ipν,f )e−ipf ·y√

2VEpf

)(
ϵνfe

−iqf ·y√
2Vωqf

)〈
0
∣∣T (Φ†(x)Φ(y))

∣∣0〉
+

(
(ipµ,i)e

ipi·x√
2VEpi

)(
ϵµi e

iqi·x√
2Vωqi

)(
e−ipf ·y√
2VEpf

)(
ϵνfe

−iqf ·y√
2Vωqf

)〈
0
∣∣T (Φ†∂νΦ)

∣∣0〉] ,
(2.57)
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where ∂µ ≡ ∂
∂xµ , ∂ν ≡ ∂

∂yν
. Now we need to make use of the following definitions

〈
0
∣∣T (Φ(x)Φ†(y))

∣∣0〉 = i

∫
d4k

(2π)4
eik·(x−y)

−k2 −M2 + iε
, (2.58)

〈
0
∣∣T (∂µΦ(x)Φ

†(y))
∣∣0〉 = −

∫
d4k

(2π)4
kµe

ik·(x−y)

−k2 −M2 + iε
, (2.59)

〈
0
∣∣T (Φ(x)∂νΦ

†(y))
∣∣0〉 = ∫ d4k

(2π)4
kνe

ik·(x−y)

−k2 −M2 + iε
, (2.60)

〈
0
∣∣T (∂µΦ(x)∂νΦ

†(y))
∣∣0〉 = i

∫
d4k

(2π)4
kµkνe

ik·(x−y)

−k2 −M2 + iε
, (2.61)

to plug them into the S-matrix element and we find

Sfi =
e2√

2VEpi
2Vωqi

2VEpf
2Vωqf

∫
d4x

∫
d4y ei[(pi+qi)·x−(pf+qf )·y]

[
−i(ipi · ϵi)(ipf · ϵf )

∫
d4k1
(2π)4

e−ik1·(x−y)

−k21 −M2 − iε
+ (ipf · ϵf )ϵµi

∫
d4k2
(2π)4

kµ,2e
−ik2·(x−y)

−k22 −M2 − iε

+(ipi · ϵi)ϵνf
∫

d4k3
(2π)4

kν,3e
−ik3·(x−y)

−k23 −M2 − iε
+ iϵµi ϵ

ν
f

∫
d4k4
(2π)4

kµ,4kν,4e
−ik4·(x−y)

−k24 −M2 − iε

]
,

(2.62)

which simplifies to be

Sfi = E
[
i(pi · ϵi)(pf · ϵf )

∫
d4x

∫
d4y

∫
d4k1
(2π)

ei(pi+qi−k1)·xei(k1−pf−qf )·y

−k21 −M2 − iε

+i(pf · ϵf )ϵµi
∫

d4x

∫
d4y

∫
d4k2
(2π)4

kµ,2e
i(pi+qi−k2)·xei(k2−pf−qf )·y

−k22 −M2 − iε

+i(pi · ϵi)ϵνf
∫

d4x

∫
d4y

∫
d4k3
(2π)4

kν,3e
i(pi+qi−k3)·xei(k3−pf−qf )·y

−k23 −M2 − iε

+iϵµi ϵ
ν
f

∫
d4x

∫
d4y

∫
d4k4
(2π)4

kµ,4kν,4e
i(pi+qi−k4)·xei(k4−pf−qf )·y

−k24 −M2 − iε

]
,

(2.63)

where E = e2√
2VEpi2Vωqi2VEpf

2Vωqf

. Now we’re ready to carry out the integrals. We can

integrate with respect to x for each term and they all will yield
∫
d4x → (2π)4δ(4)(pi +

qi − ka) similarly with integrating with respect to y
∫
d4y → (2π)4δ(4)(ka − pf − qf )

where a = 1, . . . , 4. Thus when we integrate with respect to ka, those integrals all yield∫
d4ka → (2π)4δ(4)(pi + qi − pf − qf ). Thus the amplitude becomes
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iMI
fi = −4e2(pi · ϵi)(pf · ϵf )

−(pf + qf )2 −M2
, (2.64)

where we used the fact that the Dirac delta function enforces momentum conservation

so pi + qi = pf + qf as well as the fact that the photon is transverse so ϵi · qi = ϵf · qf = 0.

Further simplifications can be made by recognizing that p2 = −M2 and q2 = 0 which

leaves

iMI
fi =

2e2(pi · ϵi)(pf · ϵf )
pi · qi

. (2.65)

We can find the amplitude for the last diagram by making the observation that it’ll

be the same as this one by making the substitution qi ↔ −qf which gives

iMII
fi = −2e2(pi · ϵi)(pf · ϵf )

pi · qf
. (2.66)

Meaning the total tree-level amplitude for this process is

iMtot
fi = 2e2

[
(pi · ϵi)(pf · ϵf )

pi · qi
− (pi · ϵi)(pf · ϵf )

pi · qf
− ϵi · ϵf

]
(2.67)

2.3 Compton Scattering

e−γ → e−γ

Here our initial state |i⟩ =
∣∣e−1 , γ2〉 and our final state |f⟩ =

∣∣e−4 , γ3〉. So we wish

to destroy γ2 and create γ3 which means we need two A’s which implies we need to go

second order. At x, we destroy e−1 and create e−4 and the same can be done at y

x

e−1

γ2
y

e−4

γ3

y

e−1

γ2
x

e−4

γ3
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Notice how these diagrams are exactly the same by x ↔ y ⇒ 1
2!
. However at x, we

can either destroy γ2 or create γ3. In the latter case γ2 is destroyed at y

x

e−1

γ2

y

e−4

γ3

Thus we have two independent contributions to the scattering amplitude

(I)

x

e−1

γ2
y

e−4

γ3

(II)

x

e−1

γ2

y

e−4

γ3

The ”dangling” fermion lines will ”join” into an internal fermion propagator. This

is seen as follows: in second order we have the term ψ(y) /A(y)ψ(y)ψ(x) /A(x)ψ(x). The

ψ(x) ∼ b̂+ d̂† so use b̂ to ”kill” e1 at x. At y, ψ(y) ∼ b̂†+ d̂ so use b̂† to create e4 or acting

on ⟨f | : ⟨e4| b̂†4 = ⟨0| ⇒ ψ(x) ⇒ b̂1 |e1⟩ = 0. There remains ⟨0|ψ(x)ψ(y)|0⟩ (and the A’s

create/destroy the photons in |f⟩ , |i⟩) with the T symbol. Thus we have the fermion

propagator. The second order terms need

⟨f |T
(
ψC(y)γ

µ
CDψD(y)ψA(x)γ

ν
ABψB(x)

)
Aµ(y)Aν(x)|i⟩ , (2.68)

where we carefully kept the Dirac indices. Writing the T -symbol explicitly there are

two terms

(a) ⟨e4, γ3|
(
ψC(y)γ

µ
cdψD(y)ψA(x)γ

ν
ABψB(x)Aµ(y)Aν(x)Θ(τ − t)

)
|e1, γ2⟩ , (2.69)

(b) ⟨e4, γ3|
(
ψA(x)γ

µ
ABψB(x)ψC(x)γ

ν
CDψD(x)Aµ(x)Aν(y)Θ(t− τ)

)
|e1, γ⟩ , (2.70)

and consider
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(I)

x

e−1

γ2
y

e−4

γ3

In (a): use b̂† from ψC(y) : ⟨e4| b̂† = ⟨0| , and b̂ from ψB(x) such that b̂1 |e1⟩ = 0 ⇒

(don’t write normalization and exponential factors) and get

(a) : ⟨0γ3|ūc(4)γµCDψD(y)ψA(x)γ
ν
ABuB(1)Aµ(y)Aν(x)Θ(τ − t)|0γ2⟩ . (2.71)

Now we can use Aν(x) (â- term) to destroy γ2 at x and the â† term from Aµ(y) to

create γ3 at y. There remains the expectation value

⟨0|ψD(y)ψA(x)|0⟩Θ(τ − t). (2.72)

In (b): use b̂1 from ψ(x) : b̂1 |e1⟩ = |0⟩ and b̂†4 from ψ(y) : ⟨e4| ˆb†4 = ⟨0| where as in (a)

the ordering was b̂†4b̂1 now for (b), the ordering is b̂1b̂
†
4 → −b̂†4b̂1 which implies there is a

relative sign ⇒ in (b), the remaining Fermi operators are

−⟨0|ψA(x)ψD(y)|0⟩Θ(t− τ), (2.73)

and use AµAν to create/annihilate the photons as in (a). There remains

⟨0|ψD(y)ψA(x)|0⟩Θ(τ−t)− ⟨0|ψA(x)ψD(y)|0⟩Θ(t−τ) ≡ ⟨0|T
(
ψD(y)ψA(x)

)
|0⟩ , (2.74)

which is the fermion propagator given by

⟨0|T
(
ψD(y)ψA(x)

)
|0⟩ = i

∫
d4k

(2π)4
(/k +me)DA

k2 −m2
e + iϵ

eik·(x−y). (2.75)

Now we put everything together to get

Diagram II differs from I by ”swapping” the external bosonic lines and labels 2↔3

with Aµ ∼ (â + â†)ϵµ after using â, â† the ϵ−polarization vectors remain ϵµ = (0, ϵi)

at x ⇒ that k = p1 + q2 and at y ⇒ k = q3 + p4. Thus the scattering amplitude for this

diagram is
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(I)

e1

γ2

e4

γ3 (II)

e1

γ3

e4

γ2

(I)

e1p1

q2ϵ2

p4e4

q3ϵ3

γ2

p1 + q2

γ3

MI
fi = (−ie)2ūC(4)γµCDϵµ(3)

i(/k +me)DA

k2 −m2
e + iϵ

γνABϵν(2)uB(1). (2.76)

For II, create γ3 at x⇒ ϵν(3)e
iq3·x and destroy γ2 ⇒ ϵµ(2)e

−iq2·y

(II)

e1p1

γ3, q3

e4

γ2, q2

p1
p1 − q3

p4

From I, ”swap” ϵµ(3) ↔ ϵµ(2), ϵν(2) ↔ ϵν(3) and q3 → −q2, q2 → −q3. This is

because now at x, q3 goes out of the vertex (eiq3·x) and q2 goes into the vertex at y(e−iq2·y)

which leads to the scattering amplitude

M(II)
fi = (−ie)2ūC(4)γµCDϵµ(2)

i(/k +me)DA

k2 −m2
e + iϵ

γνABϵν(3)uB(1), (2.77)

where k = p1− q3 = p4− q2 ⇒ p1+ q2 = q3+ p4. What is the relative sign? Swapping

γ2 ↔ γ3 ⇒ swapped only photon lines â2â
†
3 = â†3â2 (commute for 2̸=3). Thus there’s a

relative + sign. We can see this by noticing that swapping the electron lines also swap the

lines in the Fermi propagator ⇒ swapping all 4-Fermi lines⇒ they commute⇒ relative

+ sign⇒ Mtot
fi = M(I)

fi +M(II)
fi . Thus the scattering amplitude for Compton Scattering

is
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Mtot
fi = i(−ie)2

[
ū(4)/ϵ(3)

/p1 + /q2 +me

(p1 + q2)2 −m2
e + iϵ

/ϵ(2)u(1) + ū(4)/ϵ(2)
/p1 − /q3 +me

(p1 − q3)2 −m2
e + iϵ

/ϵ(3)u(1)

]
.

(2.78)

2.3.1 Feynman Rules

(1) Draw the different Feynman Diagrams: relabeling x↔ y cancels 1
2!

(2) For each incoming fermion line: b̂→ u and for each outgoing fermion line b̂† → ū.

For incoming anti-fermions d̂ → v̄ and for outgoing anti-fermions d̂† → v. Arrange the

spinors in order (ū, v̄)γ(u, v) from ψγµψ.

(3) Conserve energy/momentum at each vertex: the transfer momentum to an internal

propagator is pin − pout ⇒ total E/p conserved.

(4) In-out photons (”on-shell”) ⇒ ϵµ = (0, ϵ̂).

(5) Internal scalar propagator:

i

k2 − µ2 + iϵ
,

Internal photon propagator:

−igµν
k2 + iϵ

,

Internal MVB propagator:

−i
(
gµν − kµkν

M2

)
k2 −M2 + iϵ

,

Internal fermion propagator:

i(/k +m)

k2 −m2 + iϵ
,

(6) ”Swapping” external bosonic lines ⇒ relative (+) sign and swapping external

fermion lines ⇒ relative (-) sign (from anti-commutators)

(7) In-out particles obey free-field dispersion relations ”on-shell” k2 =M2

2.3.2 Compton Scattering Revisited: Gauge Invariance and Ward Identities

Recall the diagrams and Mfi for e1γ2 → e4γ3
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e1

γ2

e4

γ3

+

e1

γ3

e4

γ2

Mfi = i(−ie)2
[
ū(4)/ϵ(3)

/p1 + /q2 +me

(p1 + q2)2 −m2
e + iϵ

/ϵ(2)u(1) + ū(4)/ϵ(2)
/p1 − /q3 +me

(p1 − q3)2 −m2
e + iϵ

/ϵ(3)u(1)

]
.

(2.79)

The photons are external on-shell with q22 = q23 = 0. We can write

Mfi = Mµν(p1, p4; q2, q3)ϵ
µ(q2)ϵ

ν(q3), (2.80)

where

Mµν = −ie2
[
ū(4)γµ

1

/p1 + /q2 −me

γνu(1) + ū(4)γν
1

/p1 − /q3 −me

γµu(1)

]
, (2.81)

with 1
/Q−m

= /Q+m
Q2−m2 . This result is more general: for an S-matrix element with external

(on-shell) photons, the Mfi can always be written as Mµναβ···ϵ
µ(p1)ϵ

ν(p2)ϵ
α(p3) · · ·

Figure 16: A source emit-
ting photons. The S-matrix
must maintain its gauge in-
variance in spite of the use
of gauge fields here.

The photons are physical, transverse (ϵµλ = (0, ϵ̂)) but

the Sfi must be gauge invariant with

Âµ(x) =
1√
V

∑
p,λ

ϵµλ(p)√
2Ep

[
âp,λe

−ip·x + â†p,λe
ip·x
]
. (2.82)

Under a gauge transformation: Aµ → Aµ + ∂µΛ ⇒

ϵµλ(p) → ϵµλ(p) + pµΛ̃. Therefore the gauge invariance of Sfi

must imply

pµ1Mµναβ = pν2Mµναβ = pα3Mµναβ · · · = 0. (2.83)

These are Ward Identities which are a consequence of Gauge Invariance. Consider

pµ3Mµν = 0. Total E/p conservation means p1 + q2 = p4 + q3 which also means

1

/p1 + /q2 −me

=
1

/p4 + /q3 −me

. (2.84)
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When we put in current conservation at each vertex

qµ3Mµν = −ie2
[
ū(4)/q3

1

/p4 − /q3 −me

γνu(1) + ū(4)
1

/p1 − /q3 −me
/q3u(1)

]
. (2.85)

Writing /q3 = /p4+/q3−me−(/p4−me) and ū(4)(/p4−me) = 0. So the first term becomes

ū(4)γνu(1). The second term /q3 = −(/p1−/q3−me)+(/p1−me) and (/p1−me)u(1) = 0 which

means the second term becomes −ū(4)γνu(1). So qµ3Mµν = 0. Note that the individual

terms in Mµν do not cancel. Only the sum of all contributions cancel. This enforces Sfi

is gauge invariant but all Feynman diagrams at a given order must be included. Same

for qµ2Mµν = 0.

The Ward Identities simplify the calculation of unpolarization |Mfi|2 by summing

over the final photon polarizations. To show the main aspect, consider only one photon

in the final state Mfi = ϵµλ(p)Mµ:

|Mfi|2 = M∗
µMνϵ

µ
λϵ

ν
λ. (2.86)

The physical photons carry the constraint q2 = 0 with two transverse polarizations.

The summed over polarizations yields

2∑
λ=1

|Mfi|2 = M∗
µMν

2∑
λ=1

ϵµλϵ
ν
λ. (2.87)

Define ηµ = (1, 0, 0, 0); q · η = ω(q). Using

2∑
λ=1

ϵµλϵ
ν
λ = −gµν − qµqν

(q · η)2
+

(q · η)
(q · η)2

(qµην + qνηµ). (2.88)

Because qµMµ = 0, only the −gµν term contributes therefore

2∑
λ=1

|Mfi|2 = −gµνM∗
µMν . (2.89)

For unpolarized Compton Scattering

2∑
λ=1

2∑
ρ=1

M∗
µνMαβϵ

µ
λ(q2)ϵ

ν
λ(q2)ϵ

α
ρ (q3)ϵ

β
ρ(q3) = gµαgνβM∗

µνMαβ. (2.90)
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2.3.3 Compton Scattering Cross Section: Klein-Nishina + Thompson

Carrying out the traces, but without summing over the photon polarizations gives

|Mfi|2 = e4
[
q′ · p
q · p

+
q · p
q′ · p

+ 4ϵ(q) · ϵ′(q′)− 2

]
, (2.91)

e1

γ2

e4

γ3

p1 p4

+

e1

γ3

e4

γ2

where qµ = (ω,q), q′µ = (ω′,q′). In the lab frame where the initial electron is at rest,

pµ = (me, 0) and we get the Klein-Nishina Formula

dσ

dΩ

∣∣∣∣
lab

=
α2
EM

4m2
e

[
ω′

ω

]2[
ω′

ω
+
ω

ω′ + 4(ϵ · ϵ′)− 2

]
, (2.92)

where E/p conservation yields

ω′

ω
=

1

1 + ω
me

(1− cos θ)
. (2.93)

In the low energy limit ω′/ω ≃ 1

dσ

dΩ

∣∣∣∣
lab

=
α2
EM

4m2
e

· 4(ϵ · ϵ′)2. (2.94)

Averaging over initial and summing over final photon polarizations

1

2

∑
λ

∑
λ′

(ϵ · ϵ′)2 = 1

2
(1 + cos2 θ) = 1− 1

2
sin2 θ, (2.95)

which when applied to the differential cross section gives

dσ

dΩ

∣∣∣∣
lab

=
α2
EM

2m2
e

(1 + cos2 θ). (2.96)

2.3.4 Differential Thompson Scattering Cross Section

The Thompson Cross Section is
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σTh =

∫
dσ

dΩ
dΩ =

8π

3

α2
EM

m2
e

≃ 0.665× 10−24 cm2. (2.97)

This can be calculated from the full Klein-Nishina differential cross section (and using

1
2

∑
λ

∑
λ′(ϵ · ϵ′)2) which is

dσ

dΩ

∣∣∣∣
lab

=
α2
EM

2m2
e

[
ω′

ω

]2[
ω′

ω
+
ω

ω′ − sin2 θ

]
. (2.98)

In the low energy limit we recover Thompson Scattering but in the high energy limit

ω′

ω
∼ me

ω
1

1−cos θ
and features a divergence as θ → 0. This is a collinear singularity: the

intermediate propagator is ∼ 1
(p1+q2)2−m2 and (p1+ q2)

2 = p21+ q
2
2 +2p1 · q2 = (p4+ q3)

2 ⇒

(p4 + q3)
2 −m2

e = 2p4 · q3 = 2(E4ω4 − p4 · q3) with ω3 = |q3|. In the high energy limit

E4 ∼ |p4| ⇒ 2|p3||p4|(1− cos θ). This collinear singularity in the high energy limit is

σKN =
2πα2

EM

s
ln

(
s

m2
e

)
. (2.99)

In the low energy limit, the Thompson Scattering cross section features the quantity

r0 = αEM

me
= 2.82 × 10−13 cm which is called the ”charge radius of the electron”. This

corresponds to the radius r0 such that the Coulomb-”self energy” of the electron

e2

4πr0
= mec

2, (2.100)

which is the rest energy and

σTh =
8πr20
3

. (2.101)

This represents one of the largest cross sections in particle physics. It is almost as big

as nuclear cross sections. Thompson scattering is the primary process that establishes

local thermodynamic equilibrium in the electron photon plasma in the early universe and

establishes the temperature of the CMB. The term (ϵ · ϵ′)2 → sin2 θ in dσ
dΩ

leads to a

quadrupole polarization of the photon distribution.
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2.3.5 Lessons Learned from Compton Scattering

(1) Ward Identities: Gauge invariance imposes constraints on the Mfi and is only

fulfilled by summing of all diagrams at a given order.

(2) Klein-Nishina Cross Sections: Thompson scattering is the low energy limit with

r20 ∼ 10−24 cm2 where r0 is the classical charge radius of the electron ∼ 10−13 cm.

(3) Collinear singularities: In the high energy limit, collinear singularities lead to log

enhancement of cross sections.

3 Gravitational Compton Scattering

3.1 Graviton-Complex Scalar Scatter

We start with the Lagrangian

√
−gL =

1

16πG

√
−gR−

√
−g
(
gµν∇µΦ

†∇νΦ +M2Φ†Φ
)
. (3.1)

We shall be expanding our flat space gµν = ηµν + κhµν where κ2 = 32πG. From here

we can expand the inverse and volume element

gµν = ηµν − κhµν + . . . ,
√
−g = 1 +

κ

2
h+

κ2

8
(h2 − 2hαβhαβ) + . . . , (3.2)

where h ≡ ηµνhµν . First we’ll pay attention to the Lagrangian for the scalar field LΦ.

We shall also ignore terms that go like h or ∂µhµν since the polarization tensors are both

traceless and transverse. The Lagrangian becomes

LΦ = −
(
1− κ2

4
(hαβ)

2

)[
(ηµν − κhµν + κ2hµλhνλ + . . .)∂µΦ

†∂νΦ +M2Φ†Φ
]

(3.3)

= −(∂µΦ†∂µΦ +M2Φ†Φ) + κhµν∂µΦ
†∂νΦ− κ2hµλhνλ∂µΦ

†∂νΦ +
κ2

4
(hλρ)

2(∂µΦ†∂µΦ +M2Φ†Φ).

(3.4)

The interaction Lagrangian is

Lint = κhµν∂µΦ
†∂νΦ− κ2hµλhνλ∂µΦ

†∂νΦ+
κ2

4
(hλρ)

2(∂µΦ†∂µΦ+M2Φ†Φ) ≡ LggΦ +LggΦΦ.

(3.5)
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The Feynman diagrams for these interactions are

Φ

g

Φ

g

qi qf +

Φ

g

Φ

g

pi

qi
Φ

pf

qf +

Φ

g

Φ

g

pi

qf

pf

The S-matrix elements can be found via the normal processes

Sfi = (−i)
(
−κ2

) ∫
d4x

〈
f

∣∣∣∣T (κ2hµλhνλ∂µΦ†∂νΦ− 1

4
(hλρ)

2(∂µΦ†∂µΦ +M2Φ†Φ)

)∣∣∣∣i〉 ,
(3.6)

where |i⟩ = |g,Φ⟩ , |f⟩ = |g,Φ⟩ and we also have

Φ̂ → âpie
ipi·x√

2VEpi

, ĥµν →
âqiλϵ

λ
µνe

iqi·x√
2Vωqi

,

and

Φ̂† →
â†pf e

−ipf ·x√
2VEpf

, ĥµν →
â†qfρϵ

ρ
µνe

−iqf ·x√
2Vωqf

.

Let’s call the first term SI
fi and the second term SII

fi . Then

SI
fi = iκ2

∫
d4x

〈
f

∣∣∣∣∣T
(
(−ipfµ)â†pf e

−ipf ·x√
2VEpf

)(
â†qfαϵ

µλ
α e−iqf ·x√
2Vωqf

)(
(ipiν)

âpie
ipi·x√

2VEpi

)(
âqiβϵ

β
λνe

iqi·x√
2Vωqi

)∣∣∣∣∣i
〉

(3.7)

= iκ2
∫

d4x
(−ipf · ϵf )(ϵf · ϵi)(ipi · ϵi)ei(pi+qi−pf−qf )·x√

2VEpi
2VEpf

2Vωqi
2Vωqf

, (3.8)

and integrating the above, the associated amplitude is

iMI
fi = −κ2(ϵf · ϵi)(pf · ϵf )(pi · ϵi), (3.9)

where we used the fact that ϵµν = ϵµϵν . There’s an additional amplitude where we

swap the polarization vector and momentum of the graviton

iMIII
fi = −κ2(ϵf · ϵi)(pf · ϵi)(pi · ϵf ). (3.10)
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Next we set our attention to the other S-matrix term

SII
fi = −iκ

2

4

∫
d4x

〈
f
∣∣T (hµνhµν(∂

λΦ†∂λΦ +M2Φ†Φ))
∣∣i〉 (3.11)

= −iκ2
∫

d4x

(
ϵµνρ e

−iqf ·x√
2Vωqf

)(
ϵλµνe

iqi·x√
2Vωqi

)(
e−ipf ·x√
2VEpf

)(
eipi·x√
2VEpi

)[
(−ipλf )(ipiλ) +M2

]
(3.12)

= −iκ2
∫

d4x
(ϵf · ϵi)2(pf · pi +M2)ei(pi+qi−pf−qf )·x√

2VEpi
2VEpf

2Vωqi
2Vωqf

, (3.13)

and when integrating the result gives

iMII
fi =

κ2

4
(ϵf · ϵi)2(pf · pi +M2) =

κ2

4
(ϵf · ϵi)2qf · qi, (3.14)

where we used the fact that

pi + qi = pf + qf ⇔ (pi − pf )
2 = (qi − qf )

2 ⇒ pf · pi = qf · qi −M2. (3.15)

There is also the other diagram to take account of where we swap the momentum and

polarization vector but that diagram is identical to the previous one. Therefore the tree

level amplitude for the 4-point vertex is

iMI
fi+iMII

fi+iMIII
fi +iMIV

fi = −κ2
[
(ϵf · ϵi)(pf · ϵfpi · ϵi + pf · ϵipi · ϵf )−

1

2
(ϵf · ϵi)2qf · qi

]
.

(3.16)

Now we can look at the 3-point vertex:

Sfi =
(−i)2κ2

2!

∫
d4x

∫
d4y ⟨f |T (hλρ(y)hµν(x)∂λΦ

†(x)∂ρΦ(x)∂µΦ
†(x)∂νΦ(x))|i⟩ ,

(3.17)

where |f⟩ , |i⟩ are the as defined previously. Using

Φ̂ → âpie
ipi·x√

2VEpi

, ĥµν →
âqiλϵ

λ
µνe

iqi·x√
2Vωqi

,

and

Φ̂† →
â†pf e

−ipf ·y√
2VEpf

, ĥµν →
â†qfρϵ

ρ
µνe

−iqf ·y√
2Vωqf

,
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we are left with

SV
fi = −κ2

∫
d4x

∫
d4y

ϵαβf ϵµνi (−ipfα)(ipiν)ei(pi+qi)·xe−i(pf+qf )·y√
2VEpi

2VEpf
2Vωqi

2Vωqf

〈
0
∣∣T (∂µΦ

†(x)∂βΦ(y))
∣∣0〉 .

(3.18)

Recall from Scalar QED the Green’s function

〈
0
∣∣T (∂µΦ(x)∂βΦ

†(y))
∣∣0〉 = i

∫
d4k

(2π)4
kµkβe

ik·(x+y)

−k2 −M2 + iε
, (3.19)

the S-matrix is then

SV
fi =

iκ2(ϵf · pf )(ϵi · pi)ϵµi ϵ
β
f√

2VEpi
2VEpf

2Vωqi
2Vωqf

∫
d4x

∫
d4y

∫
d4k

(2π)4
kµkβe

i(pi+qi−k)·xei(k−pf−qf )·y

−k2 −M2 + iε
.

(3.20)

Integrating the x and y coordinates yield
∫
d4x → (2π)4δ(4)(pi + qi − k),

∫
d4y →

(2π)4δ(4)(k − pf − qf ) and integrating the internal momentum yields
∫
d4k → δ(4)(pi +

qi − pf − qf ). We are thus left with the amplitude

iMV
fi = −κ2

(pf · ϵf )(pi · ϵi)ϵµi (pf + qf )µϵ
β
f (pf + qf )β

−(pf + qf )2 −M2
=
κ2

2

(pi · ϵi)2(pf · ϵf )2

pi · qi
. (3.21)

And the other amplitude where we swap the q’s and ϵ’s

iMV I
fi = −κ

2

2

(pi · ϵf )2(pf · ϵi)2

pi · qf
. (3.22)

Unfortunately, we’re not done. There is yet one more diagram of order κ2 coming

from the Einstein-Hilbert action whose interaction vertex is

g

g

g

The cubic order Ricci scalar is

√
−gR(3) = −3κ3

2
hµνhλρ∂λ∂ρhµν − 9κ3hµν∂ρhλν∂ρhµλ − 3κ3∂λhµν∂ρhµλhνρ. (3.23)
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