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Before we can start this paper, let us define a few concepts

Definition 1.1. A canonical variable, qi, is called cyclic if its canonical momentum is

constant i.e. for some Hamiltonian, H(q1, . . . , qn, p1, . . . , pn, t) we have

ṗi = −∂H

∂qi
= 0. (1)

Cyclic variables are nice because they make solving dynamical systems easy. When-

ever a variable, φ, is cyclic then

φ̇ =
∂H

∂pφ
⇒ φ =

(
∂H

∂pφ

)
t+ φ0. (2)

pφ is a constant with respect to time which implies ∂H/∂pφ will be independent of

φ and t. Since cyclic variables makes solving the Hamiltonian equations much simpler,

it would be convenient to find a set of variables where every variable is cyclic. Doing so

requires us to define the concept of a canonical transformation

Definition 1.2. A mapping (qi, pi) 7→ (Qi, Pi) is called a canonical transformation

if {Qi, Pj} = δij.

In general, these new canonical variables

Qi = Qi(q,p, t), Pi = Pi(q,p, t), H(q,p, t) 7→ H̃(Q,P, t), (3)
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where q = (q1, . . . , qn). We demand that our new canonical coordinates satisfy their

own Hamilton equations

Q̇i =
∂H̃

∂Pi

, Ṗi = − ∂H̃

∂Qi

. (4)

Now both sets of canonical variables and Hamiltonians need to satisfy the least action

principle

δ

∫ t2

t1

dt

[
n∑

i=1

q̇ipi −H

]
= 0, δ

∫ t2

t1

dt

[
n∑

i=1

Q̇iPi − H̃

]
= 0, (5)

where the variations in each coordinate must vanish (as according to the least action

principle). Since these two equations satisfy the least action principle on the same interval,

that implies that they must be exactly the same up to a total derivative on a function

that vanishes at both endpoints δF (t2)− δF (t1) = 0. Thus, we have

n∑
i=1

Q̇iPi − H̃ =
n∑

i=1

q̇ipi −H − dF

dt
. (6)

Suppose F = F (q,Q, t). Then the total time derivative on F is

dF

dt
=

∂F

∂qi
q̇i +

∂F

∂Qi

Q̇i +
∂F

∂t
. (7)

We could’ve done the same thing if we instead chose F = F (q,P, t). It is simply the

standard pick to go with what we chose. When plugging in the above condition, we can

turn (6) into

0 =
n∑

i=1

q̇i

(
∂F

∂qi
− pi

)
+

n∑
i=1

Q̇i

(
∂F

∂Qi

+ Pi

)
+H − H̃ +

∂F

∂t
. (8)

In order for the right-hand side of the equation to be zero, we require the following

constraints:

pi =
∂F

∂qi
, Pi = − ∂F

∂Qi

, H̃ = H +
∂F

∂t
. (9)

This motivates our third definition
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Definition 1.3. A function, F (q,Q, t) is called a generating function if it satisfies

pi =
∂F

∂qi
, Pi = − ∂F

∂Qi

, H̃ = H +
∂F

∂t
= 0. (10)

The generating function guarantees that at least one of our new variables will be

cyclic. That’s great and all, but what if we can do better? What if we could find a set of

coordinates where all of our (old) canonical variables are cyclic? To find such variables,

we suppose there exists a new function S(q,P, t) that is related to the original generating

function via a Legendre transformation

F (q,Q, t) = S(q,P, t)−
n∑

i=1

QiPi. (11)

We can find how this new generating function relates to the old and new coordinates

by considering the total derivative on F

dF =
∂F

∂qi
dqi +

∂F

∂Qi

dQi +
∂F

∂t
dt = pi dqi − Pi dQi +

∂F

∂t
dt (12)

= dS − Pi dQi −Qi dP i . (13)

Solving for dS gives us

dS = pi dqi +Qi dP i +
∂F

∂t
dt . (14)

Now we have something akin to a thermodynamic state function. Because of that, we

have the following constraints on the new generating function

∂S

∂qi
= pi,

∂S

∂Pi

= Qi,
∂S

∂t
=

∂F

∂t
. (15)

That relation yields the following equation

H(q1, . . . , qn, ∂q1S, . . . , ∂qnS, t) +
∂S

∂t
= 0. (16)

This is the famous Hamilton-Jacobi Equation.
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