
Brans-Dicke Theory

Marcell Howard

October 18, 2023

1 Equations of Motion

Here we are interested in deriving the Brans-Dicke equations of motion. First we start off

with the Lagrangian for Brans-Dicke

L =
√
−g

(
ϕR− ω

ϕ
∇µϕ∇µϕ+ Lm

)
. (1)

where ϕ is a scalar field, R = Rµ
µ = gµνRµν is the Ricci scalar, ω is a dimensionless

parameter and Lm is the Lagrangian for matter. Next we place the Lagrangian in the

action.

S =

∫ √
−g(ϕR− ω

ϕ
∇µϕ∇µϕ+ Lm) d

4x. (2)

We will soon vary with respect to the inverse metric. But first we recognize that R =

gµνRµν . So we then have

S =

∫ √
−g

(
ϕgµνRµν −

ω

ϕ
gµν∇µϕ∇νϕ+ Lm

)
d4x . (3)

Now we shall vary the action with respect to the inverse metric

δS = δSϕR + δSϕ + δSM (4)
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where

δSϕR =

∫
(ϕRµνδg

µν + ϕgµνδRµν)
√
−g + ϕRδ

√
−gd4x,

δSϕ =

∫
−ω

ϕ
∇µϕ∇νϕ δg

µν
√
−g − ω

ϕ
∇µϕ∇µϕ δ

√
−g d4x

(5)

and SM is the action for matter. The second term in SϕR can be found in Carroll’s book.

Using the result from there we find δSϕR takes the form

δSϕR =

∫
(ϕRµνδg

µν +∇ρ[gµν∇ρϕδgµν −∇λϕδg
ρλ]

√
−g − 1

2
ϕR

√
−ggµνδg

µν) d4x

=

∫
(ϕRµν −

1

2
ϕRgµν − [∇µ∇νϕ− gµν∇2ϕ])

√
−gδgµν d4x.

(6)

Looking now to δSϕ, the action becomes

δSϕ = −
∫

ω

ϕ
(∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2)

√
−gδgµν d4x, (7)

with ∇µϕ∇µϕ = (∇ϕ)2. Recall that the functional derivative of the action satisfies

δS =

∫ ∑
i

(
δS

δΨi
δΨi

)
ddx , (8)

where {Ψi} is a complete set of fields being varied. This brings the total action δS to be

1√
−g

δS

δgµν
= ϕ

(
Rµν −

1

2
Rgµν

)
−

(
∇µ∇νϕ− gµν∇2ϕ

)
− ω

ϕ
(∇µϕ∇νϕ− 1

2
gµν (∇ϕ)2) +

1

2
√
−g

δSM

δgµν
= 0.

(9)

Defining the energy momentum tensor to be

Tµν = − 1√
−g

δSM

δgµν
(10)

Moving the last terms to the other side and dividing both sides by ϕ, we get

Rµν −
1

2
Rgµν =

1

2ϕ
Tµν +

1

ϕ
(∇µ∇νϕ− gµν∇2ϕ) +

ω

ϕ2

(
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

)
(11)

2



2 Degrees of Freedom

Brans-Dicke theory was one of the earliest competitors to GR. It is discussed today because it

represent the prototypical example of a scalar tensor theory. The Lagrangian for the theory

is given by

L =
√
−g

(
ϕR− ω

ϕ
∇µϕ∇µϕ

)
. (12)

We wish to expand all the terms to at most second order in ϕ,R, and
√
−g. This brings

us to

gµν = ηµν + hµν , (13)

ϕ = ϕo + φ, (14)

√
−g = 1 +

1

2
h+

1

8
h2 − 1

4
hµνh

µν , (15)

R = R(0) +R(1) +R(2), (16)

where η and ϕo is some flat space solution, hµν and φ are perturbations and taken to be

much less than 1, h = hµ
µ = ηµνhµν is the trace , and R(0) = 0, R(1), R(2) are the zeroth,

first, and second order curvature respectively. Keeping only the terms quadratic in both hµν

and φ, the Lagrangian becomes

L = ϕo(
√
−gR)(2) − ω

ϕo

∂µφ∂
µφ. (17)

Lets split these Lagrangians off into different sectors in order to deal with them easily.

LR(2) = ϕo(
√
−gR)(2), (18)

Lφ = − ω

ϕo

∂µφ∂
µφ, (19)
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Since we’ve done the degree of freedom count for LR(2) (being multiplied by a constant

background won’t change any of the calculations) we only need to focus our attention on

Lφ. We next perform the following decompositions:

h00 = h00 = 2Φ, (20)

h0i = −h0
i = wi, (21)

h = hµ
µ = ηµνhµν = −2Φ + h̄, (22)

wi = wT
i + ∂iΛ, (23)

hij = hTT
ij + ∂iv

T
j + ∂jv

T
i + 2

(
∂i∂jΨ− 1

3
∇2Ψδij

)
+

1

3
h̄δij, (24)

∂ihTT
ij = δijhTT

ij = ∂ivTi = ∂iwT
i = 0, (25)

where h̄ = Tr[hij] and δij is the identity matrix. Defining the following gauge invariant

fields

J ≡ Φ− Λ̇ + Ψ̈, L ≡ 1

3
(h̄− 2∇2Ψ), Mi ≡ wT

i − v̇Ti . (26)

We’re ready to start our analysis on the degrees of freedom in these actions. We can turn

our gaze to LR(2) and using the results from the linearized GR calculation while also scaling

by the constant background ϕo we get the following actions:

ST =

∫
1

2
hij
TT□hTT

ij d4x, (27)

SV =

∫
1

2
(∂iMj)

2 d4x, (28)

SS =

∫
4J∇2L− L∇2L− 2L̇2 d4x, (29)
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Sφ =

∫
ω

ϕo

φ□φ d4x. (30)

We can now analyze the true degrees of freedom that are present in hµν . First, looking

at the vector action we can see that no time derivatives of Mi are present in the action.

Therefore it is an auxiliary field and we may use its equations of motion (EOM) to eliminate

it. Proceeding accordingly we find

δL
δM i

= ∇2Mi = 0 ⇒ Mi = 0, (31)

which implies that SV = 0. Next we turn our attention to the scalar action. Since J

appears linearly with no time derivatives, we may interpret it as a Lagrange multiplier. From

there we can see that the EOM of J enforces the following constraint:

δL
δJ

= ∇2L = 0 ⇒ L = 0, (32)

and therefore, SS = 0. The total action is now S = ST + Sφ and thus we can say that

the Lagrangian for linearized Brans-Dicke has in total, three degrees of freedom. two from

hTT
ij and one from φ.
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