Brans-Dicke Theory

Marcell Howard

October 18, 2023

1 Equations of Motion

Here we are interested in deriving the Brans-Dicke equations of motion. First we start off with the Lagrangian for Brans-Dicke

$$
\begin{equation*}
\mathcal{L}=\sqrt{-g}\left(\phi R-\frac{\omega}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi+\mathcal{L}_{m}\right) \tag{1}
\end{equation*}
$$

where ϕ is a scalar field, $R=R^{\mu}{ }_{\mu}=g^{\mu \nu} R_{\mu \nu}$ is the Ricci scalar, ω is a dimensionless parameter and \mathcal{L}_{m} is the Lagrangian for matter. Next we place the Lagrangian in the action.

$$
\begin{equation*}
S=\int \sqrt{-g}\left(\phi R-\frac{\omega}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi+\mathcal{L}_{m}\right) \mathrm{d}^{4} x \tag{2}
\end{equation*}
$$

We will soon vary with respect to the inverse metric. But first we recognize that $R=$ $g^{\mu \nu} R_{\mu \nu}$. So we then have

$$
\begin{equation*}
S=\int \sqrt{-g}\left(\phi g^{\mu \nu} R_{\mu \nu}-\frac{\omega}{\phi} g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi+\mathcal{L}_{m}\right) \mathrm{d}^{4} x \tag{3}
\end{equation*}
$$

Now we shall vary the action with respect to the inverse metric

$$
\begin{equation*}
\delta S=\delta S_{\phi R}+\delta S_{\phi}+\delta S_{M} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
\delta S_{\phi R} & =\int\left(\phi R_{\mu \nu} \delta g^{\mu \nu}+\phi g^{\mu \nu} \delta R_{\mu \nu}\right) \sqrt{-g}+\phi R \delta \sqrt{-g} \mathrm{~d}^{4} x \\
\delta S_{\phi} & =\int-\frac{\omega}{\phi} \nabla_{\mu} \phi \nabla_{\nu} \phi \delta g^{\mu \nu} \sqrt{-g}-\frac{\omega}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi \delta \sqrt{-g} \mathrm{~d}^{4} x \tag{5}
\end{align*}
$$

and S_{M} is the action for matter. The second term in $S_{\phi R}$ can be found in Carroll's book. Using the result from there we find $\delta S_{\phi R}$ takes the form

$$
\begin{align*}
\delta S_{\phi R} & =\int\left(\phi R_{\mu \nu} \delta g^{\mu \nu}+\nabla_{\rho}\left[g_{\mu \nu} \nabla^{\rho} \phi \delta g^{\mu \nu}-\nabla_{\lambda} \phi \delta g^{\rho \lambda}\right] \sqrt{-g}-\frac{1}{2} \phi R \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}\right) \mathrm{d}^{4} x \tag{6}\\
& =\int\left(\phi R_{\mu \nu}-\frac{1}{2} \phi R g_{\mu \nu}-\left[\nabla_{\mu} \nabla_{\nu} \phi-g_{\mu \nu} \nabla^{2} \phi\right]\right) \sqrt{-g} \delta g^{\mu \nu} \mathrm{d}^{4} x
\end{align*}
$$

Looking now to δS_{ϕ}, the action becomes

$$
\begin{equation*}
\delta S_{\phi}=-\int \frac{\omega}{\phi}\left(\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu \nu}(\nabla \phi)^{2}\right) \sqrt{-g} \delta g^{\mu \nu} \mathrm{d}^{4} x \tag{7}
\end{equation*}
$$

with $\nabla_{\mu} \phi \nabla^{\mu} \phi=(\nabla \phi)^{2}$. Recall that the functional derivative of the action satisfies

$$
\begin{equation*}
\delta S=\int \sum_{i}\left(\frac{\delta S}{\delta \Psi^{i}} \delta \Psi^{i}\right) \mathrm{d}^{d} x \tag{8}
\end{equation*}
$$

where $\left\{\Psi^{i}\right\}$ is a complete set of fields being varied. This brings the total action δS to be

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}}=\phi\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)-\left(\nabla_{\mu} \nabla_{\nu} \phi-g_{\mu \nu} \nabla^{2} \phi\right)-\frac{\omega}{\phi}\left(\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu_{\nu}}(\nabla \phi)^{2}\right)+\frac{1}{2 \sqrt{-g}} \frac{\delta S_{M}}{\delta g^{\mu \nu}}=0 . \tag{9}
\end{equation*}
$$

Defining the energy momentum tensor to be

$$
\begin{equation*}
T_{\mu \nu}=-\frac{1}{\sqrt{-g}} \frac{\delta S_{M}}{\delta g^{\mu \nu}} \tag{10}
\end{equation*}
$$

Moving the last terms to the other side and dividing both sides by ϕ, we get

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{1}{2 \phi} T_{\mu \nu}+\frac{1}{\phi}\left(\nabla_{\mu} \nabla_{\nu} \phi-g_{\mu \nu} \nabla^{2} \phi\right)+\frac{\omega}{\phi^{2}}\left(\nabla_{\mu} \phi \nabla_{\nu} \phi-\frac{1}{2} g_{\mu \nu}(\nabla \phi)^{2}\right) \tag{11}
\end{equation*}
$$

2 Degrees of Freedom

Brans-Dicke theory was one of the earliest competitors to GR. It is discussed today because it represent the prototypical example of a scalar tensor theory. The Lagrangian for the theory is given by

$$
\begin{equation*}
\mathcal{L}=\sqrt{-g}\left(\phi R-\frac{\omega}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi\right) . \tag{12}
\end{equation*}
$$

We wish to expand all the terms to at most second order in ϕ, R, and $\sqrt{-g}$. This brings us to

$$
\begin{gather*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \tag{13}\\
\phi=\phi_{o}+\varphi, \tag{14}\\
\sqrt{-g}=1+\frac{1}{2} h+\frac{1}{8} h^{2}-\frac{1}{4} h_{\mu \nu} h^{\mu \nu}, \tag{15}\\
R=R^{(0)}+R^{(1)}+R^{(2)}, \tag{16}
\end{gather*}
$$

where η and ϕ_{o} is some flat space solution, $h_{\mu \nu}$ and φ are perturbations and taken to be much less than $1, h=h^{\mu}{ }_{\mu}=\eta^{\mu \nu} h_{\mu \nu}$ is the trace, and $R^{(0)}=0, R^{(1)}, R^{(2)}$ are the zeroth, first, and second order curvature respectively. Keeping only the terms quadratic in both $h_{\mu \nu}$ and φ, the Lagrangian becomes

$$
\begin{equation*}
\mathcal{L}=\phi_{o}(\sqrt{-g} R)^{(2)}-\frac{\omega}{\phi_{o}} \partial_{\mu} \varphi \partial^{\mu} \varphi . \tag{17}
\end{equation*}
$$

Lets split these Lagrangians off into different sectors in order to deal with them easily.

$$
\begin{align*}
\mathcal{L}_{R^{(2)}} & =\phi_{o}(\sqrt{-g} R)^{(2)} \tag{18}\\
\mathcal{L}_{\varphi} & =-\frac{\omega}{\phi_{o}} \partial_{\mu} \varphi \partial^{\mu} \varphi, \tag{19}
\end{align*}
$$

Since we've done the degree of freedom count for $\mathcal{L}_{R^{(2)}}$ (being multiplied by a constant background won't change any of the calculations) we only need to focus our attention on \mathcal{L}_{φ}. We next perform the following decompositions:

$$
\begin{gather*}
h_{00}=h^{00}=2 \Phi, \tag{20}\\
h_{0 i}=-h_{i}^{0}=w_{i}, \tag{21}\\
h=h^{\mu}{ }_{\mu}=\eta^{\mu \nu} h_{\mu \nu}=-2 \Phi+\bar{h}, \tag{22}\\
w_{i}=w_{i}^{T}+\partial_{i} \Lambda, \tag{23}\\
h_{i j}=h_{i j}^{T T}+\partial_{i} v_{j}^{T}+\partial_{j} v_{i}^{T}+2\left(\partial_{i} \partial_{j} \Psi-\frac{1}{3} \nabla^{2} \Psi \delta_{i j}\right)+\frac{1}{3} \bar{h} \delta_{i j}, \tag{24}\\
\partial^{i} h_{i j}^{T T}=\delta^{i j} h_{i j}^{T T}=\partial^{i} v_{i}^{T}=\partial^{i} w_{i}^{T}=0, \tag{25}
\end{gather*}
$$

where $\bar{h}=\operatorname{Tr}\left[h_{i j}\right]$ and $\delta_{i j}$ is the identity matrix. Defining the following gauge invariant fields

$$
\begin{equation*}
J \equiv \Phi-\dot{\Lambda}+\ddot{\Psi}, \quad L \equiv \frac{1}{3}\left(\bar{h}-2 \nabla^{2} \Psi\right), \quad M_{i} \equiv w_{i}^{T}-\dot{v}_{i}^{T} \tag{26}
\end{equation*}
$$

We're ready to start our analysis on the degrees of freedom in these actions. We can turn our gaze to $\mathcal{L}_{R^{(2)}}$ and using the results from the linearized GR calculation while also scaling by the constant background ϕ_{o} we get the following actions:

$$
\begin{gather*}
S_{T}=\int \frac{1}{2} h_{T T}^{i j} \square h_{i j}^{T T} \mathrm{~d}^{4} x, \tag{27}\\
S_{V}=\int \frac{1}{2}\left(\partial_{i} M_{j}\right)^{2} \mathrm{~d}^{4} x, \tag{28}\\
S_{S}=\int 4 J \nabla^{2} L-L \nabla^{2} L-2 \dot{L}^{2} \mathrm{~d}^{4} x \tag{29}
\end{gather*}
$$

$$
\begin{equation*}
S_{\varphi}=\int \frac{\omega}{\phi_{o}} \varphi \square \varphi \mathrm{~d}^{4} x \tag{30}
\end{equation*}
$$

We can now analyze the true degrees of freedom that are present in $h_{\mu \nu}$. First, looking at the vector action we can see that no time derivatives of M_{i} are present in the action. Therefore it is an auxiliary field and we may use its equations of motion (EOM) to eliminate it. Proceeding accordingly we find

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta M^{i}}=\nabla^{2} M_{i}=0 \Rightarrow M_{i}=0 \tag{31}
\end{equation*}
$$

which implies that $S_{V}=0$. Next we turn our attention to the scalar action. Since J appears linearly with no time derivatives, we may interpret it as a Lagrange multiplier. From there we can see that the EOM of J enforces the following constraint:

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta J}=\nabla^{2} L=0 \Rightarrow L=0 \tag{32}
\end{equation*}
$$

and therefore, $S_{S}=0$. The total action is now $S=S_{T}+S_{\varphi}$ and thus we can say that the Lagrangian for linearized Brans-Dicke has in total, three degrees of freedom. two from $h_{i j}^{T T}$ and one from φ.

