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1 Preface

We are interested in exploring the richness of theories of modified gravity (MG). Before

we really dive in, it is necessary to answer the question on what exactly do we mean

by modified theories of gravity. Broadly speaking, modified gravity refers to two things:

theories whose equations of motion admits the Einstein Field Equations (EFE) and Mod-

ified Newtonian Dynamics (MOND). We shall be spending the majority of this document

discussing the former, but we shall briefly go into the latter as well. We will see that there

have been many theories that have been cooked up over the decade with each new ap-

proach to modifying General Relativity in such a way where (1) it can replicate GR in all

regimes where we know GR is correct/an accurate description and (2) makes predictions

distinct from GR in regions that have yet to be probed.

Conventions We use the mostly plus metric signature, i.e. ηµν = (−,+,+,+) and units

where c = ~ = 1. The reduced four dimensional Planck mass is MP = 1√
8πG
≈ 2.43×1018

GeV. The d’Alembert and Laplace operators are defined to be � = ∂µ∂
µ and ∇2 = ∂i∂

i

respectively. We use boldface letters x to indicate 3-vectors and we use x and p to denote

4-vectors. Conventions for the curvature tensors, covariant and Lie derivatives are all

taken from Carroll [1].
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2 Introduction

General Relativity (GR) has proven itself time and time again as one of our most success-

ful theories in all of physics. From the bending of light, to the prediction of Mercury’s

precession around the sun, to the Shapiro time delay, GR has passed every classical (so-

lar system) test that has been thrown at it and serves as the backbone to the standard

model of cosmology. To this day, the usage of GPS systems all around the world lend

their existence due to this beautiful theory. And yet there are still a number of theorists

who seek to modify it in some way.

3 Motivation

Historically, the motivation for studying MG was to better understand GR. Being able to

alter and deform GR can give a substantial insight into the sensitivity of its mathematical

structure. We find that there can only be very small deviations or very tight constraints

that are placed on any new parameters to the theory.

In the modern day, when asked for their motivation, theorists cite the expansion of the

universe. Data gathered from Type 1a supernovae leads one to the conclusion that the

universe’s rate of expansion is increasing which is to say that it is accelerating exponen-

tially. If GR is to be believed (and we have every reason to do so) then this accelerated

expansion is due to the so-called Dark Energy. Reports of the rotation curves of galaxies

also paint the picture that our understanding of the universe on an astronomical scale is

also lacking.

What’s more, all attempts on building a full quantum field theory (QFT) out of GR us-

ing our usual tools have all proved to be unsuccessful so far. GR is non-renormalizable as

a QFT i.e. it is not UV complete. With the Planck scale being at MP = 2.43× 1018 GeV

in addition to any and all phenomenon being well below this energy threshold, we can

well regard GR as an effective field theory. These observations combined leads us to

the following conclusion: if GR represents our best understanding of gravity then our

understanding is yet to be complete.
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4 Lovelock’s Theorem

So what kinds of theories are we even allowed to write down?

Theorem 4.1 (Lovelock’s Theorem) Suppose Aµν is a symmetric, bilinear, divergence-

less tensor on a four dimensional (pseudo-)Riemannian manifold and that is a function

of the metric and up to its second derivatives (although linear in its second derivatives).

Then, the only possible tensor is

Aµν = aGµν + bgµν , (1)

where Gµν is the Einstein tensor and a, b are constants.

This is a very powerful theorem because it places very heavy constraints on what we

are allowed to do the original Einstein-Hilbert action and expect to still get something

proportional to the EFE. This implies that the only modifications to GR that are allowed

has to fall into one of the five categories:

� Add additional degrees of freedom to the action

� Work with derivatives of the metric higher than four

� Work in d 6= 4 dimensional spacetime

� Introduce non-local interactions into the Lagrangian i.e. inverse differential opera-

tors/Green’s functions to the action

� Deduce the equations of motion with something other than the Euler-Lagrange

equations

With all of the restrictions that are placed on the equations of motion, one might

wonder whether its possible to add only tensors whose components are functions of the

second derivatives of the metric raised to exactly one power. This leads us to our second

most powerful theorem
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Theorem 4.2 Let R be the curvature scalar of some (pseudo-)Riemannian manifold.

Then, we can say that it is the only scalar invariant which is linear in the second deriva-

tives of the associated metric tensor gµν.

Since we’re required to only include objects that are invariant under both local Lorentz

transformation as well as arbitrary diffeomorphisms, the above theorem tells us that the

only allowed scalar quantity (and hence the only allowed object in the Lagrangian) is

precisely the Ricci scalar. This theorem is usually referred to as Vermeil’s theorem, after

the German mathematician who proved it in 1917.

Now that we have laid down the groundwork, we are finally ready to be introduced

to a survey of the possible models that exist in the literature.

5 Te(Ve)S

The first class of modified gravity theories we want to cover is what happens when one

includes additional degrees of freedom to the action. This class of theories goes by the

name Tensor-(Vector)-Scalar theories or Te(Ve)S for short. These are probably the most

popular method of modifying GR because of how flexible theories of this kind can be.

Since vector degrees of freedom are often left out, we shall do the same here as well.

5.1 Brans-Dicke Theory

Brans-Dicke Theory is sort of the prototypical example of a scalar field theory. It was

considered to be competitor of GR in the earlier days of the theory, but observations

have placed very heavy constraints on the parameters of this scalar-tensor theory so as

to render it as a toy model for modified gravity. The Lagrangian for Brans-Dicke theory

is

L =
√
−g
(
φR− ω

φ
∇µφ∇µφ+ Lm

)
, (2)

where φ is a scalar field, ω is a dimensionless parameter and Lm is the Lagrangian for

matter. The equations of motion for the metric are then
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Rµν −
1

2
Rgµν =

1

2φ
Tµν +

1

φ
(∇µ∇νφ− gµν�φ) +

ω

φ2

(
∇µφ∇νφ−

1

2
gµν(∇φ)2

)
, (3)

where (∇φ)2 ≡ ∇µφ∇µφ and we have defined the stress-energy tensor to be

Tµν = − 1√
−g

δSM
δgµν

, (4)

with SM being the action for the matter fields. Next we write down the equations of

motion for the scalar field

�φ =
1

2(2ω + 3)
T. (5)

Current constraints on the dimensionless parameter ω give us |ω| & 104.

5.2 Horndeski Theory

Horndeski Theory represents the most general scalar-tensor Lagrangian in four dimen-

sions that admits at most second derivatives of the scalar field in its equations of motion.

This is a requirement that’s imposed on us by Ostrogradsky’s Instability to avoid ghost

instabilities in our equations of motion. The most general Lagrangian that we can write

down is given by

LH = G2(φ,X)−G3(φ,X)�φ+G4(φ,X)R +G4,X

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
+G5(φ,X)Gµν∇µ∇νφ−

G5,X

6

[
(�φ)3 − 3�φ∇µ∇νφ∇µ∇νφ+ 2∇µ∇νφ∇ν∇λφ∇λ∇µφ

]
(6)

where X = −1
2
gµν∇µφ∇νφ, Gi = Gi(φ,X) are arbitrary functions of φ and X, and

we use f,X and f,φ to denote derivatives with respect to X and φ respectively. The

theory as written is actually called the generalized Galileon but its closely related to

Horndeski Theory. This theory is important because all scalar-tensor theories can be

cast as a limiting case of the above theory just by making particular choices of Gi’s. For

example, notice how we recover Brans-Dicke theory by simply setting G2(φ,X) = 2ω
φ
X,

G4(φ,X) = φ, and G3 = G5 = 0.
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5.3 Massive Gravity

Typically in the context of GR, one includes the mass term by way of expanding the

metric around some background spacetime i.e.

gµν = ηµν + hµν , (7)

where ηµν is the Minkowski metric and |hµν | << 1 is the metric perturbation which

will serve as our dynamical field. We work on flat spacetime WLOG. The mass term is

simply

Lm6=0 = − 1

8κ2
m2(hµνhµν − h2) = −m

2

8κ2
ηµληνρ(hµνhλρ − hµλhνρ), (8)

where h = ηµνhµν is the trace of the perturbation and κ =
√

8πG is the reduced Planck

mass. Notice how the addition of this new mass term includes all possible quadratic

contractions of h as is the case in E&M when one adds the massive vector 1
2
m2AµA

µ.

The mass term gets added to the quadratic curvature scalar ala

L = R(2) − 1

2
m2(hµνhµν − h2) (9)

= ∂λhµν∂
µhλν +

1

2
∂µh∂

µh− 1

2
∂λhµν∂

λhµν − ∂µhµν∂νh−
1

2
m2(hµνhµν − h2) (10)

There’s a number of interesting complications that arise when considering a massive

spin-2 field. The first issue is the loss of gauge symmetry as is the case when one intro-

duces a massive vector field in the case of the Proca Lagrangian. This deficiency can be

ameliorated by performing the Stükelberg Trick in that one adds redundant fields to the

action that restores the gauge symmetry. Secondly, we don’t smoothly recover GR in the

limit as m2 → 0. Massive gravity carries 5 degrees of freedom while GR only carries 2

degrees of freedom which correspond to the two polarizations of the graviton. Even if we

didn’t have the aforementioned issues associated to this theory, there is still the issue of

ghost instabilities. There have been constructions of massive gravity that have rendered

this a non-issue however.
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6 f(R) Theory

Here we write about what happens when one wishes to consider derivatives that are higher

than two in the metric. This class of theories are broadly referred to as f(R) models,

where R is the Ricci scalar. Now theories that admit higher order derivatives greater

than two in the dynamical field are generally disfavored due to Ostrogradsky Instability.

However, f(R) theories admit a particular symmetry which may render this a non-issue.

The action for f(R) theories is given by the following

S =
1

2κ2

∫
d4x
√
−gf(R), (11)

where again f(R) is some general function of the curvature scalar. When we vary the

action with respect to the metric, we get

f ′(R)Rµν − (∇µ∇νf
′(R)−�f ′(R)gµν)−

1

2
f(R)gµν = 0, (12)

where primes denote derivatives with respect to the curvature scalar. It is also com-

mon in the literature to write

fR ≡
df

dR
, (13)

and we call fR the scalaron. Note, we recover the EFE by setting f(R) = R. Without

loss of generality, we can also include the Gauss-Bonnet term in the action

S =
1

2κ2

∫
d4x
√
−g[f(R) + G], G = R2 − 4RµνR

µν +RµνλρR
µνλρ. (14)

The Gauss-Bonnet term is a topological term that exists for (pseudo-)Riemannian

manifolds in d = 4 dimensions. It’s typically left out of the action because it is a total

derivative term and hence plays no role in the dynamics of our theories.

6.1 Hu-Sawicki Theory

The model posits that the action should be

7



S =
1

2κ2

∫
d4x
√
−g(R + f(R)) + Sm (15)

where

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (16)

Sm is the action for any additional matter fields. We have three free parameters c1,

c2, and n, and the parameter m2 = κρ̄m/3 with ρ̄m being the average matter density of

the universe. For large curvature such that |m2/R| � 1, the scalaron becomes

f(R) ≈ −c1

c2

m2 +
c1

c2
2

m2

(
m2

R

)n
. (17)

This implies as c1/c
2
2 → 0, we recover ΛCDM cosmology i.e. c1/c2 approaches the

cosmological constant. Now, in order to replicate the entire expansion history of the

universe, the curvature scalar has to take on a background value of

R = 3Ωm,0H
2
0

(
1 + 4

ΩΛ,0

Ωm,0

)
, (18)

where ΩΛ,0 is the dark energy fractional energy density evaluated in the present time.

The additional scalar degree of freedom (also known as the scalaron) plays a very impor-

tant role in the growth an evolution of structure. As a result, we’re interested in studying

its behavior. Since its first derivative governs its evolution we write

fR = −n c1(R/m2)n−1

(c2(R/m2)n + 1)2
≈ −nc1

c2
2

(
m2

R

)n+1

. (19)

Plugging in the background value for the curvature scalar gives us

f̄R0 = −nc1

c2
2

(
Ωm,0

3(Ωm,0 + ΩΛ,0)

)n+1

. (20)

6.2 TeVeS Conformal Equivalence

What makes f(R) models special, is the fact that they are conformally equivalent to

scalar-tensor theories. And this equivalence is most apparent under a Legendre transfor-

mation. First we write
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f(R) = R + f̃(R)⇒ φ(R) ≡ df

dR
= 1 + f̃R, (21)

where φ acts as the canonical partner to f(R). If we assume that φ(R) is an invertible

function i.e. R(φ) exists, then we can define a potential for our scalar field and our

Lagrangian becomes

LE =
√
−g(φR− U(φ)), (22)

where the potential U(φ) is given by

U(φ) = (φ− 1)R− f̃(R). (23)

Now our Lagrangian is currently unwieldy. It is expressed what theorists call the

Jordan Frame, or the scalar field is non-minimally coupled to gravity. We can change to

the Einstein Frame by a simple conformal transformation on the metric i.e.

ḡµν = φgµν . (24)

This turns the Lagrangian into the form

LE =
√
−g
(

1

2κ2
R̄− 1

2
ḡµν∂µϕ∂νϕ− V (ϕ)

)
, (25)

where we have introduced the new scalar field ϕ and its associated potential via the

relations

φ = exp

(√
κ2

6
ϕ

)
, V (ϕ) =

1

2κ2
exp

(
−
√

2κ2

3
ϕ

)
U(ϕ). (26)

And thus we are able to escape many of the same pathologies that are brought up

when considering higher order derivatives of the metric by simply swapping for some

generic scalar field.
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7 d > 4 Dimensions

This class of theories broadly refers to working in spacetime dimensions d, such that

d 6= 4. Since gravity is trivial in d < 4 dimensions, this requirement almost always ends

up referring to d > 4 dimensions.

7.1 Kaluza-Klein Theory

Kaluza-Klein theory is thought to be one of the very first attempts that ended up unifying

the fundamental forces to another. Kaluza-Klein theory is important for a number of

historical reasons. It is the theory that first bore the idea that there could be extra

spatial dimensions that are yet to be accounted for in our Standard Model of particle

physics. It is also the theory that gave birth to the idea that we can curl the additional

spatial dimension i.e. compactify it so as to hide any detection of that new spatial

dimension. These ideas have clearly found themselves into the mainstream consciousness

in the research program of String Theory. We start off with the line element

ds2 = gAB dxA dxB = e2αφgµν dxµ dxν + e2βφ(dx4 + Aµ dxµ)2, (27)

where capital Latin indices run from 0 to 4 and lowercase indices run from 0 to 3, φ is

a scalar field often called the dilaton and Aµ is some vector field and α, β are constants

defined as

α =
1

2
√

(d− 1)(d− 2)
, β = −(d− 2)α, (28)

where d = 4 is the number of dimensions after integrating out the extra dimension.

The action for this theory becomes

S =

∫
d4x
√
−g
(
R− 1

2
gµν∇µφ∇νφ−

1

4
e−
√

3φF µνFµν

)
, (29)

where Fµν = ∇µAν −∇νAµ. The equations of motion found from varying gµν , φ, and

Aµ respectively are
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Gµν =
1

2

[
∇µφ∇νφ−

1

2
gµν∇λφ∇λφ+ e−

√
3φ

(
FµλF

λ
ν −

1

2
F 2gµν

)]
, (30)

∇µ(e−
√

3φFµν) = 0, (31)

�φ = −
√

3

4
e−
√

3φF 2, (32)

where F 2 = F µνFµν . Notice that a vanishing dilaton field enforces the condition that

F 2 = 0 which implies no new dynamics.

7.2 DGP Gravity

The DGP model posits that our four dimensional spacetime is embedded within a five

dimensional brane. The action for the theory is

S =

∫
d4x
√
−g
(

1

2κ2
R + Lm

)
+

1

2κ2rc

∫
d5x
√
−g5R5, (33)

where rc is the free parameter that determines the length-scale for which we recover

standard ΛCDM cosmology, and R5 and g5 are the five dimensional curvature scalar and

metric determinant respectively. The equations of motion are

∇2φ = 4πGa2δρm +
1

2
∇2ϕ, (34)

∇2ϕ+
r2
c

3βa2

[
(∇2ϕ)2 − (∇i∇jϕ)2

]
=

8πGa2

3β
δρm, (35)

where

β = β(a) = 1 + 2Hrc

(
1 +

Ḣ

3H2

)
. (36)

8 Non-Locality

A non-local action generally refers to an action that possesses functions with non-polynomial

differential operators. These can be broken down into two classes: analytic and non-

analytic. Analytic differential operators take on the form
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L = R +R

(
e−�/`

2 − 1

�

)
R. (37)

Non analytic functions typically are represented by inverse differential operators i.e.

Green’s functions

S =
1

2κ2

∫
d4x
√
−g
[
R +Rf(�−1R)− 2Λ

]
. (38)

They receive the label of non-locality because a Green’s function G(x−y) is a function

of two spacetime events that, in principle, can be taken to be arbitrarily far away from

one another

9 MOND

Modified Newtonian Dynamics (MOND) refers to a modification to the gravitational

potential in the Poisson equation

∇2Φ = 4πGρm. (39)

At its heart, MOND makes the radical divergence to modify the Newtonian force

law directly instead of the EFE. Milogram proposed the following modification to the

Newtonian force law:

F = m
a2

a0

, (40)

where a0 is some acceleration scale, produces a flat rotation curve i.e. a constant

velocity. Assuming a circular orbit, the velocity is related to the acceleration by

a =
v2

r
. (41)

Since the only force on galactic scales to be considered is the gravitational force, we

write

GMm

r2
=
m(v

2

r
)2

a0

⇒ v(r) = (GMa0)
1
4 . (42)
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This all implies the gravitational potential is modified to be

−∇Φ = µ

(
|a|
a0

)
a, (43)

where

µ(x) =


x, x� 1

1, x� 1

. (44)

It has been estimated that a0 ≈ 1× 10−8 cm s−2. While MOND is able to ex-

plain galactic rotation curves (as well as an impressive array of other astrophysical phe-

nomenon) it is limited in its scope. Because it provides a modification to the gravitational

potential in the weak limit, it can’t even hope to make predictions on cosmological scales.

Never mind respecting all the other symmetries we impose on our gravitational theories

such as diffeomorphism invariance and Lorentz invariance. All of that being said, a rel-

ativistic extension of MOND was written down by Jacob Bekenstein. By introducing a

timelike vector field i.e. Aµ such that

gµνAµAν = −1, (45)

as well as a dynamical scalar field φ and a non-dynamical scalar field Ω, the action

becomes

S = SEH + SV + SS, (46)

where SEH is the regular Einstein-Hilbert action, SV is the action for the vector field

given by

SV = − K

4κ2

∫
d4x
√
−g
[
FµνF

µν − 2

K
λ(AµA

µ + 1)

]
, (47)

where K is a dimensionless parameter, Fµν = ∂µAν−∂νAµ is the field strength tensor

for the vector field, and λ = λ(x) acts as a Lagrange multiplier that enforces the timelike

constraint on the vector field. The scalar action is given by
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SS = −1

2

∫
d4x

[
Ω2hµν∂µφ∂νφ+

1

2

G

`2
Ω4f

(
kGΩ2

)]
, (48)

where hµν = gµν − AµAν , f is a free dimensionless function, k is a dimensionless

constant, and ` is introduced for dimension-full consistency. The equations of motion

then become

Gµν = 8πG
[
Tµν + (1− e−4φ)AλTλ(µAν) + τµν

]
+ Θµν , (49)

K∇νF
νµ + λAµ + 8πGΩ2Aλ∂λφg

µν∂νφ = 8πG(1− e−4φ)gµλAρTλρ, (50)

∇ν [Ω
2hµν∂µφ] =

[
gµν + (1 + e4φ)AµAν

]
Tµν , (51)

−kGΩ2f − 1

2
(kGΩ)2f ′ = k`2hµν∂µφ∂νφ, (52)

where we define the tensors

τµν = Ω2

[
∂µφ∂νφ−

1

2
gµν(∂φ)2 − Aλ∂λφ

(
A(µ∂ν)φ−

1

2
gµνA

ρ∂ρφ

)]
− G

4`2
Ω4f(kGΩ2)gµν ,

(53)

where (∂φ)2 ≡ gµν∂µφ∂νφ and

Θµν = K

(
F 2
µν −

1

4
F 2gµν

)
− λAµAν , (54)

where F 2
µν = FµλF

λ
ν .

10 Constraints Placed on Modified Gravity

Now that we have a nice survey on some of the more popular modified theories of grav-

ity models that are out there in the modern day, we can start talking about different

constraints that are imposed on each gravity theory. The constraints on MG generally

come from considering cosmological perturbation theory, so we will restrict our attention

to this area of physics. When discussing MG theories, it is most convenient to introduce
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certain parametrizations so that we can avoid having to refer to any particular model

and hence we can study entire classes of theories. A popular method for doing this is

called the µ − γ parametrization. We start off with the differential line element in the

Newtonian gauge under the weak field limit

ds2 = −[1 + 2Ψ(x, t)] dt2 + a2(t)[1 + 2Φ(x, t)]δij dxi dxj , (55)

where a(t) is the scale factor, δij is the Kronecker delta, and Ψ and Φ are gravitational

potentials. The equations of motion become

−k2Ψ = 4πGa2µ(k, t)ρ̄mδm, Φ(k, t) = γ(k, t)Ψ(k, t), (56)

where δm is the overdensity of matter and we express the gravitational potentials in

Fourier/momentum space. Note µ = γ = 1 recovers GR. In general, for any MG theory

to be a true successor to GR, it must pass all of the solar system tests i.e. the precession

of Mercury, the Shapiro Time Delay etc. Today, there are additional implications from

the discoveries of gravitational waves and the recently imaged ”photo” of Sagittarius A*.

10.1 GW170817

GW170817 is the gravitational wave observation from a binary Neutron star inspiral

that also had a counterpart in the optical range i.e. a photon. This multi-messenger

observation places tight bounds on the speed that gravity has to satisfy according to our

MG models. The reason being, the speed of light c and the speed of gravity cg were found

to coincide so closely |c− cg| & 10−15, that many models were ruled out by this event.
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